欢迎来到天天文库
浏览记录
ID:18183148
大小:86.50 KB
页数:6页
时间:2018-09-15
《高一数学人教b版必修3学案:3章 概率 章末复习》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、章末复习课知识概览对点讲练知识点一 互斥事件与对立事件互斥事件和对立事件,都是研究怎样从一些较简单的事件的概率的计算来推算较复杂事件的概率.应用互斥事件的概率加法公式解题,备受高考命题者的青睐,应用公式时一定要注意首先确定各个事件是否彼此互斥,然后求出各事件分别发生的概率,再求和.对于较复杂事件的概率,可以转化为求对立事件的概率.例1 某公务员去开会,他乘火车、轮船、汽车、飞机去的概率分别为0.3、0.2、0.1、0.4.(1)求他乘火车或乘飞机去的概率;(2)求他不乘轮船去的概率.点评 “互斥”和“对立”事件容易搞混.互斥事件是指两事件不可能同时发生.对立
2、事件是指互斥的两事件中必有一个发生.变式迁移1 黄种人群中各种血型的人所占的比例如下:血型ABABO该血型的人所占比例(%)2829835已知同种血型的人可以输血,O型血可以输给任一种血型的人,其他不同血型的人不能互相输血,小明是B型血,若小明因病需要输血,问:(1)任找一个人,其血可以输给小明的概率是多少?(2)任找一个人,其血不能输给小明的概率是多少?知识点二 古典概型古典概型是一种基本的概型,也是学习其它概型的基础,在高考题中,经常出现此种概型的题目,解题时要紧紧抓住古典概型的两个基本特征,即有限性和等可能性.在应用公式P(A)=时,关键是正确理解基本
3、事件与事件A的关系,求出n、m.例2 将一颗骰子先后抛掷2次,观察向上的点数,求(1)两次向上的点数之和为7或是4的倍数的概率;(2)以第一次向上的点数为横坐标x,第二次向上的点数为纵坐标y的点(x,y)在圆x2+y2=20的内部(不包括边界)的概率.变式迁移2 任取两个一位数,观察结果,问:(1)共有多少种不同的结果?(2)取出的两数之和等于3的结果有多少种?(3)两数的和是3的概率是多少?知识点三 几何概型几何概型同古典概型一样,是概率中最具有代表性的试验概型之一,在高考命题中占有非常重要的位置.我们要理解并掌握几何概型试验的两个基本特征,即每次试验中基
4、本事件的无限性和每个事件发生的等可能性,并能求简单的几何概型试验的概率.例3 甲、乙两船驶向一个不能同时停泊两艘船的码头,它们在一昼夜内到达该码头的时刻是等可能的.如果甲船停泊时间为1h,乙船停泊时间为2h,求它们中的任意一艘都不需要等待码头空出的概率.(保留小数点后三位)变式迁移3 在圆心角为90°的扇形中,以圆心O为起点作射线OC,求使得∠AOC和∠BOC都不小于30°的概率.课时作业一、选择题1.从装有2个红球和2个黑球的口袋中任取2个球,那么互斥而不对立的两个事件是( )A.至少有1个黑球与都是黑球B.至少有1个黑球与至少有1个红球C.恰有1个黑球
5、与都是黑球D.至少有1个黑球与都是红球2.一个电路板上装有甲、乙两根熔丝,甲熔断的概率为0.85,乙熔断的概率为0.74,两根同时熔断的概率为0.63,则至少有一根熔断的概率是( )A.0.59B.0.85C.0.96D.0.743.将一个各个面上均涂有颜色的正方体锯成27个同样的大小的小正方体,从中任取一个小正方体,其中恰有3面涂有颜色的概率为( )A.B.C.D.4.在5张卡片上分别写有数字1,2,3,4,5,然后将它们混和,再任意排列成一行,则得到的数能被2或5整除的概率是( )A.0.2B.0.4C.0.6D.0.85.已知实数x、y,可以在0
6、7、答题9.袋中有红、黄、白3种颜色的球各1只,从中每次任取1只,有放回地抽取3次,求:(1)3只全是红球的概率;(2)3只颜色全相同的概率;(3)3只颜色不全相同的概率;(4)3只颜色全不相同的概率.10.在圆x2+y2-2x-2y+1=0内随机投点,求点与圆心距离小于的概率.章末复习课对点讲练例1 解 (1)记“他乘火车去”为事件A1,“他乘轮船去”为事件A2,“他乘汽车去”为事件A3,“他乘飞机去”为事件A4,这四个事件不可能同时发生,故它们彼此互斥.故P(A1∪A4)=P(A1)+P(A4)=0.3+0.4=0.7.所以他乘火车或乘飞机去的概率为0.7.8、(2)设他不乘轮船去的概率为P,则P=1-P(A2)
7、答题9.袋中有红、黄、白3种颜色的球各1只,从中每次任取1只,有放回地抽取3次,求:(1)3只全是红球的概率;(2)3只颜色全相同的概率;(3)3只颜色不全相同的概率;(4)3只颜色全不相同的概率.10.在圆x2+y2-2x-2y+1=0内随机投点,求点与圆心距离小于的概率.章末复习课对点讲练例1 解 (1)记“他乘火车去”为事件A1,“他乘轮船去”为事件A2,“他乘汽车去”为事件A3,“他乘飞机去”为事件A4,这四个事件不可能同时发生,故它们彼此互斥.故P(A1∪A4)=P(A1)+P(A4)=0.3+0.4=0.7.所以他乘火车或乘飞机去的概率为0.7.
8、(2)设他不乘轮船去的概率为P,则P=1-P(A2)
此文档下载收益归作者所有