资源描述:
《信息理论与编码习题》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、2.7离散无记忆信源的扩展52.3每帧电视图像可看成是由310个独立变化的像素组成的,每个像素又取128个不同的亮度电平,并设亮度电平是等概出现的。问每帧图像含有多少信息量?现假设有一个广播员,在约10000个汉字中选1000个字来口述这一电视图像,(1)试问广播员描述此图像所广播的信息量是多少?(2)假设汉字字汇是等概分布的,并且彼此无依赖,试问若要恰当地描述此帧图像,广播员在口述中至少需要多少个汉字?答案:王虹解:设电视图像每个像素取128个不同的亮度点平,并设电平等概率出现,每个像素的亮度信源为
2、Xa,a,,a12812128P(ai)1P(ai)1128,1128,,1128i1得每个像素亮度含有的信息量为:H(X)log1287比特像素一帧中像素均是独立变化的,则每帧图像信源就是离散亮度信源的无记忆N次扩展信源。得每帧图像含有的信息量为N6H(X)NH(X)2.110比特每帧广播口述时,广播员是从10000个汉字字汇中选取的,假设汉字字汇是等概率分布的,则汉字字汇信源是Ybb
3、bq1,2,qP(bj)1,q10000P(bj)1q,1q,,1qi1得该汉字字汇中每个汉字含有的信息量H(Y)logqlog1000013.29比特字2广播员口述电视图像是从此汉字字汇信源中独立地选取1000个字来描述。所以,广播员描述此帧图像所广播的信息量为N44H(Y)NH(Y)1000log101.32910比特千字2若广播员仍从此汉字字汇信源Y中独立地选取汉字来描述电视图像,每次口述一个汉字含有N信息量是H(Y),每帧电
4、视图像含有的信息量是H(X),则广播员口述此图像至少需用的汉字数等于N6H(X)2.11051.5810字158000字H(Y)13.292.5一副充分洗乱的牌(含52张),试问:(1)任一特定排列所给出的不确定性是多少?(2)随机抽取13张牌,13张牌的点数互不相同时的不确定性是多少?解:(1)一副充分洗乱的扑克牌,共有52张,这52张牌可以按不同的一定顺序排列,可能有的不同排列状态数就是全排列种数,为67P528.0661052因为扑克牌充分洗乱,所以任一特定排列出现的概率是相等的
5、。设事件A为任一特定排列,则其发生概率为168PA1.241052可得,任一特定排列所给出的信息量为IAlog2PAlog252225.58比特67.91哈特(1)设事件B为从中抽取13张牌,所给出的点数都不同。13扑克牌52张中抽取13张,不考虑其排列顺序,共有C种可能的组合。而扑克牌中52每一种点数有4种不同的花色。而每一种花色都有13张不同的点数。13张牌中所有的点数13都不相同(不考虑其顺序)就是每种点数的花色不同,所以可能出现的状态数为4。因为13牌都是充分洗
6、乱的,所以在这C种组合中所有的点数都不相同的事件都是等概率发生的。52所以13134413394PB1.05681013C5252则事件B发生所得到的信息量为134IBlogPBlog21313.208比特C523.976哈特2.6平均互信息及其性质2.6设随机变量X{x,x}{0,1}和Y{y,y}{0,1}的联合概率空间为1212XY(x1,y1)(x1,y2)(x2,y1)(x2,y2)PXY18383818定义一个新随机
7、变量ZXY(普通乘积)。(1)计算熵H(X)、H(Y)、H(Z)、H(XZ)、H(YZ)以及H(XYZ);(2)计算条件熵H(X
8、Y)、H(Y
9、X)、H(X
10、Z)、H(Z
11、X)、H(Y
12、Z)、H(Z
13、Y)、H(X
14、YZ)、H(Y
15、XZ)以及H(Z
16、XY);(3)计算互信息量I(X;Y)、I(X;Z)、I(Y;Z)、I(X;Y
17、Z)、I(Y;Z
18、X)以及I(X;Z
19、Y);131解(1)px0px0,y0px0,y1882311px1px1,y0px
20、1,y1882HXPxilogPxi1i131py0px0,y0px1,y0882311py1px0,y1px1,y1882HYpyjlogpyj1bit/symboljZXY的概率分布如下z0z1Z71P(Z)8827711H(Z)p(zk)loglog)0.544bi