用初等变换化二次型为标准型[1]

用初等变换化二次型为标准型[1]

ID:18128475

大小:478.00 KB

页数:7页

时间:2018-09-14

用初等变换化二次型为标准型[1]_第1页
用初等变换化二次型为标准型[1]_第2页
用初等变换化二次型为标准型[1]_第3页
用初等变换化二次型为标准型[1]_第4页
用初等变换化二次型为标准型[1]_第5页
资源描述:

《用初等变换化二次型为标准型[1]》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、用矩阵的初等变换化实二次型为标准形1.数域下任意一个实二次型,总可以经过非奇异变换使得,其中为实数,通常的方法是采用配方法或初等变换法,然而传统的方法最大的缺点是不易求矩阵.下面介绍一种特殊方法,能够快速将原二次型化为标准形,一举求出非异阵.定义以表示将单位矩阵的行(列)的倍加到行(列),所得到的第三种初等阵.定理设是阶实对称阵,是有限个第三种初等阵,的乘积.且其中是维行向量,是阶阵,则必有.证明:由于是的乘积,且,根据矩阵的乘法规则,用右乘时,的第一列元素不变,从而,即是实对称的.亦为实对称阵这个定理实质上就给出矩阵化标准形,求出变换矩阵的一种方法,只要连续使用第三种

2、初等变换即可把化为上三角形.现作矩阵找出使则这个的转置阵就是我们要找的非异阵,它使为对角阵.即只要对作有限次第三种初等变换,,则当把变换成上三角阵时,的就同时化为,且使.例1求非异阵,使为对角阵,其中.解:故由定理知.例2将实二次型化为平方和.解:此二次型的系数矩阵,的主对角元素全是0,故不能立即引用定理,需先对作初等行变换及其相应的列.使经过如此变换后得到的新合同阵的主对角有非零数,然后再用定理即可.,令,则.2.若要求一正交阵使成对角阵,这等价于经过正交变换将二次型化为标准形.一般步骤是通过施密特正交化过程来求解,但此方法较为复杂,下面介绍用解一些齐次线性方程组的方

3、法来化实二次型为标准形.定理设为阶矩阵,秩,且其中是秩为的列满秩矩阵,则矩阵所含个列向量就是齐次线性方程组的一个基础解系.证明:秩存在可逆的级矩阵使,其中是秩为的列满秩矩阵同理:,其中表示秩为的每一列有且只有一元素为1的列满秩矩阵,表示秩为的每一列有且只有一元素为1的列满秩矩阵,其中,由于的解向量个数为,而为秩为的列满秩矩阵再由初等变换原理易知:矩阵所含个列向量就是齐次线性方程组的一个基础解系.定理矩阵的特征矩阵经列的初等变换可化为下三角的矩阵,且的主对角线上元素的乘积的多项式的根恰为的所有特征根.此定理证明与定理1.2相仿,故省去.下面探讨计算方法:设且,其中为下三角

4、矩阵,则的主对角线上的全部元素的多项式的全部根恰为矩阵的全部特征根,对于矩阵的每一特征根,若矩阵中非零向量的列构成列满秩矩阵,那么矩阵中和中零向量所对应的列向量是属于特征根的全部线性无关的特征向量;否则继续使得中非零向量的列构成列满秩矩阵,那么中和中向量对应的列向量是属于特征根的全部线性无关的特征向量.设所求出的特征向量,它是一组线性无关的向量,以为列向量构成矩阵,则是一个阶正定矩阵,必与单位矩阵正合同,即存在阶可逆矩阵,使得即式说明:对矩阵施行一系列的列初等变换,(相应的初等矩阵的乘积为)及一系列的行初等变换(相应的初等矩阵的乘积为),可化为单位矩阵;式说明:的列向量

5、组是一个标准正交基,可以通过对矩阵施行与对矩阵所施行的相同的初等变换求出.于是得到求正交矩阵的初等变换法对施行列初等变换,对施行行初等变换.实际上将化为,可先用分别乘以所在的行和列使变成1;再施以列初等变换把所在行其他元素化为0,又施以行初等变换把所在列的其他元素化为0,按此法,依次把变为1.其它元素变为0,那么矩阵即为所求的矩阵,且为对角阵,其中主对角线上元素例1求正交矩阵使为对角阵,其中.解:矩阵的特征根为(二重),.当时,有非零向量的列构成满秩矩阵,对应零向量的向量当时,同法求出对应特征向量,是无关的,以为列向量构成矩阵,再求出于是得:即得:且有参考文献:[1]北

6、大.高等代数[M].高等教育出版社,1989.11[2]北大数学系几何与代数教研室代数小组.高等代数[M].高等教育出版社,1987.3[3]王琳.用正交变换化实二次型为标准形方法研究[J].数学通讯,1990(3)[4]牟俊霖、李青古.洞穿考研数学[M].航空工业出版社,2005.3

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。