m 1 2 3 n f g a1a2a3amb1b2b3bnh 1 2 3 m

m 1 2 3 n f g a1a2a3amb1b2b3bnh 1 2 3 m

ID:18042750

大小:199.00 KB

页数:53页

时间:2018-09-13

m 1 2 3 n f g a1a2a3amb1b2b3bnh 1 2 3 m_第1页
m 1 2 3 n f g a1a2a3amb1b2b3bnh 1 2 3 m_第2页
m 1 2 3 n f g a1a2a3amb1b2b3bnh 1 2 3 m_第3页
m 1 2 3 n f g a1a2a3amb1b2b3bnh 1 2 3 m_第4页
m 1 2 3 n f g a1a2a3amb1b2b3bnh 1 2 3 m_第5页
资源描述:

《m 1 2 3 n f g a1a2a3amb1b2b3bnh 1 2 3 m》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、Cardinality,Recursion,andMatricesSections4.3-4.4,5.2,5.8CardinalityItwastheworkofGeorgCantor(1845–1918)toestablishthefieldofsettheoryandtodiscoverthatinfinitesetscanhavedifferentsizes.Hisworkwascontroversialinthebeginningbutquicklybecameafoundationofmodernmathematics.Cardinalityisthegen

2、eraltermforthesizeofaset,whetherfiniteorinfinite.2/23/20042DiscreteMathematicsforTeachers,UTMath504,Lecture07DefinitionforfinitesetsThecardinalityofafinitesetissimplythenumberofelementsintheset.Forinstancethecardinalityof{a,b,c}is3andthecardinalityoftheemptysetis0.MoreformallythesetAhas

3、cardinalityn(fornonnegativeintegern)ifthereisabijection(one-to-onecorrespondence)betweentheset{1,2,3,…,n}andthesetA.Formallythenwedefinethebijectionf:{1,2,3}→{a,b,c}byf(1)=a,f(2)=b,andf(3)=c,therebyproving{a,b,c}hascardinality3.2/23/20043DiscreteMathematicsforTeachers,UTMath504,Lecture0

4、7DefinitionforfinitesetsAlthoughourbooksavesthenotationforlater,wedenotethecardinalityofthesetAby

5、A

6、.Thislookslike“absolutevalue”anditmeasuresthesizeofaset,justasabsolutevaluemeasuresthemagnitudeofarealnumber.Anotherusefulnotationthatdoesnotappearinourbookistolet[n]betheset{1,2,3,…n}wit

7、h[0]=∅.Thenwecanstatethat

8、A

9、=nifthereisabijectionf:[n]→A.2/23/20044DiscreteMathematicsforTeachers,UTMath504,Lecture07DefinitionofcountableAninfinitesetAiscountablyinfiniteifthereisabijectionf:ℙ→A,whereℙisthesetofpositiveintegers.Thatisℙ={1,2,3,…}.Asetiscountableifitfiniteorcountablyinfi

10、nite.Asynonymforcountableisdenumerable.Infinitesetsthatarenotcountableareuncountableor,lessfrequently,nondenumerable.2/23/20045DiscreteMathematicsforTeachers,UTMath504,Lecture07ElementaryTheoremsThecardinalityofthedisjointunionoffinitesetsisthesumofthecardinalities(4.45a).Thatis,suppose

11、

12、A

13、=mand

14、B

15、=nfornonnegativeintegersmandnanddisjointsetsAandB.Then

16、A∪B

17、=m+n.Proof.Thereexistbijectionsf:[m]→Aandg:[n]→B.Defineafunctionh:[m+n]→(A∪B)byh(x)=f(x)if1≤x≤mandh(x)=g(x–m)ifm+1≤x≤m+n.Itistediousbutnothardtoshowthatfisabijection.Thefollowingpicturemakesthesituationclear.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。