因式分解 方法汇总

因式分解 方法汇总

ID:1780906

大小:260.00 KB

页数:5页

时间:2017-11-13

因式分解 方法汇总_第1页
因式分解 方法汇总_第2页
因式分解 方法汇总_第3页
因式分解 方法汇总_第4页
因式分解 方法汇总_第5页
资源描述:

《因式分解 方法汇总》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、因式分解方法汇总因式分解是代数式的一种重要的恒等变形,它与整式乘法是相反方向的变形.在分式运算、解方程及各种恒等变形中起着重要的作用.是一种重要的基本技能.因式分解的方法较多,除了初中课本涉及到的提取公因式法和公式法(平方差公式和完全平方公式)外,还有公式法(立方和、立方差公式)、十字相乘法和分组分解法等等.一)、公式法【例1】用立方和或立方差公式分解下列各多项式:(1)(2)分析:(1)中,,(2)中.解:(1)(2)说明:(1)在运用立方和(差)公式分解因式时,经常要逆用幂的运算法则,如,这里逆用了法则;(2)在运用立方和(差)公式分解因式时,一

2、定要看准因式中各项的符号.【例2】分解因式:(1)(2)分析:(1)中应先提取公因式再进一步分解;(2)中提取公因式后,括号内出现,可看着是或.解:(1).(2)二)、分组分解法从前面可以看出,能够直接运用公式法分解的多项式,主要是二项式和三项式.而对于四项以上的多项式,如既没有公式可用,也没有公因式可以提取.因此,可以先将多项式分组处理.这种利用分组来因式分解的方法叫做分组分解法.分组分解法的关键在于如何分组.1.分组后能提取公因式【例3】把分解因式.分析:把多项式的四项按前两项与后两项分成两组,并使两组的项按的降幂排列,然后从两组分别提出公因式与

3、,这时另一个因式正好都是,这样可以继续提取公因式.解:说明:用分组分解法,一定要想想分组后能否继续完成因式分解,由此合理选择分组的方法.本题也可以将一、四项为一组,二、三项为一组,同学不妨一试.【例4】把分解因式.分析:按照原先分组方式,无公因式可提,需要把括号打开后重新分组,然后再分解因式.解:说明:由例3、例4可以看出,分组时运用了加法结合律,而为了合理分组,先运用了加法交换律,分组后,为了提公因式,又运用了分配律.由此可以看出运算律在因式分解中所起的作用.2.分组后能直接运用公式【例5】把分解因式.分析:把第一、二项为一组,这两项虽然没有公因式

4、,但可以运用平方差公式分解因式,其中一个因式是;把第三、四项作为另一组,在提出公因式后,另一个因式也是.解:【例6】把分解因式.分析:先将系数2提出后,得到,其中前三项作为一组,它是一个完全平方式,再和第四项形成平方差形式,可继续分解因式.解:说明:从例5、例6可以看出:如果一个多项式的项分组后,各组都能直接运用公式或提取公因式进行分解,并且各组在分解后,它们之间又能运用公式或有公因式,那么这个多项式就可以分组分解法来分解因式.三)、十字相乘法1.型的因式分解这类式子在许多问题中经常出现,其特点是:(1)二次项系数是1;(2)常数项是两个数之积;(3

5、)一次项系数是常数项的两个因数之和.因此,运用这个公式,可以把某些二次项系数为1的二次三项式分解因式.【例7】把下列各式因式分解:(1)(2)解:(1).(2)说明:此例可以看出,常数项为正数时,应分解为两个同号因数,它们的符号与一次项系数的符号相同.【例8】把下列各式因式分解:(1)(2)解:(1)(2)说明:此例可以看出,常数项为负数时,应分解为两个异号的因数,其中绝对值较大的因数与一次项系数的符号相同.【例9】把下列各式因式分解:(1)(2)分析:(1)把看成的二次三项式,这时常数项是,一次项系数是,把分解成与的积,而,正好是一次项系数.(2)

6、由换元思想,只要把整体看作一个字母,可不必写出,只当作分解二次三项式.解:(1)(2)2.一般二次三项式型的因式分解大家知道,.反过来,就得到:我们发现,二次项系数分解成,常数项分解成,把写成,这里按斜线交叉相乘,再相加,就得到,如果它正好等于的一次项系数,那么就可以分解成,其中位于上一行,位于下一行.这种借助画十字交叉线分解系数,从而将二次三项式分解因式的方法,叫做十字相乘法.必须注意,分解因数及十字相乘都有多种可能情况,所以往往要经过多次尝试,才能确定一个二次三项式能否用十字相乘法分解.【例10】把下列各式因式分解:(1)(2)解:(1)(2)说

7、明:用十字相乘法分解二次三项式很重要.当二次项系数不是1时较困难,具体分解时,为提高速度,可先对有关常数分解,交叉相乘后,若原常数为负数,用减法”凑”,看是否符合一次项系数,否则用加法”凑”,先”凑”绝对值,然后调整,添加正、负号.四)、其它因式分解的方法1.配方法【例11】分解因式解:说明:这种设法配成有完全平方式的方法叫做配方法,配方后将二次三项式化为两个平方式,然后用平方差公式分解.当然,本题还有其它方法,请大家试验.2.拆、添项法【例12】分解因式分析:此多项式显然不能直接提取公因式或运用公式,分组也不易进行.细查式中无一次项,如果它能分解成

8、几个因式的积,那么进行乘法运算时,必是把一次项系数合并为0了,可考虑通过添项或拆项解决.解:说明:本解法把原

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。