勾股定理几种证明方法

勾股定理几种证明方法

ID:1761359

大小:130.50 KB

页数:7页

时间:2017-11-13

勾股定理几种证明方法_第1页
勾股定理几种证明方法_第2页
勾股定理几种证明方法_第3页
勾股定理几种证明方法_第4页
勾股定理几种证明方法_第5页
资源描述:

《勾股定理几种证明方法》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、勾股定理的证明【证法1】(课本的证明)         做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a+b,所以面积相等.即,整理得.【证法2】(邹元治证明)以a、b为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角形的面积等于.把这四个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上,B、F、C三点在一条直线上,C、G、D三点在一条直线上.∵RtΔHAE≌RtΔEBF,∴∠AHE=∠BEF.∵∠AE

2、H+∠AHE=90º,∴∠AEH+∠BEF=90º.∴∠HEF=180º―90º=90º.∴四边形EFGH是一个边长为c的正方形.它的面积等于c2.∵RtΔGDH≌RtΔHAE,∴∠HGD=∠EHA.∵∠HGD+∠GHD=90º,∴∠EHA+∠GHD=90º.又∵∠GHE=90º,∴∠DHA=90º+90º=180º.∴ABCD是一个边长为a+b的正方形,它的面积等于.∴.∴.【证法3】(赵爽证明)以a、b为直角边(b>a),以c为斜边作四个全等的直角三角形,则每个直角三角形的面积等于.把这四个直角三角形拼成如图所示形状.∵RtΔDAH≌RtΔAB

3、E,∴∠HDA=∠EAB.∵∠HAD+∠HAD=90º,∴∠EAB+∠HAD=90º,∴ABCD是一个边长为c的正方形,它的面积等于c2.∵EF=FG=GH=HE=b―a,∠HEF=90º.∴EFGH是一个边长为b―a的正方形,它的面积等于.∴.∴.【证法4】(1876年美国总统Garfield证明)以a、b为直角边,以c为斜边作两个全等的直角三角形,则每个直角三角形的面积等于.把这两个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上.∵RtΔEAD≌RtΔCBE,∴∠ADE=∠BEC.∵∠AED+∠ADE=90º,∴∠AED+∠BEC=9

4、0º.∴∠DEC=180º―90º=90º.∴ΔDEC是一个等腰直角三角形,它的面积等于.又∵∠DAE=90º,∠EBC=90º,∴AD∥BC.∴ABCD是一个直角梯形,它的面积等于.∴.∴.【证法5】(梅文鼎证明)做四个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c.把它们拼成如图那样的一个多边形,使D、E、F在一条直线上.过C作AC的延长线交DF于点P.∵D、E、F在一条直线上,且RtΔGEF≌RtΔEBD,∴∠EGF=∠BED,∵∠EGF+∠GEF=90°,∴∠BED+∠GEF=90°,∴∠BEG=180º―90º=90º.又

5、∵AB=BE=EG=GA=c,∴ABEG是一个边长为c的正方形.∴∠ABC+∠CBE=90º.∵RtΔABC≌RtΔEBD,∴∠ABC=∠EBD.∴∠EBD+∠CBE=90º.即∠CBD=90º.又∵∠BDE=90º,∠BCP=90º,BC=BD=a.∴BDPC是一个边长为a的正方形.同理,HPFG是一个边长为b的正方形.设多边形GHCBE的面积为S,则,∴. 【证法6】(项明达证明)做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),斜边长为c.再做一个边长为c的正方形.把它们拼成如图所示的多边形,使E、A、C三点在一条直线上.过

6、点Q作QP∥BC,交AC于点P.过点B作BM⊥PQ,垂足为M;再过点F作FN⊥PQ,垂足为N.∵∠BCA=90º,QP∥BC,∴∠MPC=90º,∵BM⊥PQ,∴∠BMP=90º,∴BCPM是一个矩形,即∠MBC=90º.∵∠QBM+∠MBA=∠QBA=90º,∠ABC+∠MBA=∠MBC=90º,∴∠QBM=∠ABC,又∵∠BMP=90º,∠BCA=90º,BQ=BA=c,∴RtΔBMQ≌RtΔBCA.同理可证RtΔQNF≌RtΔAEF.从而将问题转化为【证法4】(梅文鼎证明).【证法7】(欧几里得证明)做三个边长分别为a、b、c的正方形,把它们

7、拼成如图所示形状,使H、C、B三点在一条直线上,连结BF、CD.过C作CL⊥DE,交AB于点M,交DE于点L.∵AF=AC,AB=AD,∠FAB=∠GAD,∴ΔFAB≌ΔGAD,∵ΔFAB的面积等于,ΔGAD的面积等于矩形ADLM的面积的一半,∴矩形ADLM的面积=.同理可证,矩形MLEB的面积=.∵正方形ADEB的面积=矩形ADLM的面积+矩形MLEB的面积∴,即.【证法8】(杨作玫证明)做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),斜边长为c.再做一个边长为c的正方形.把它们拼成如图所示的多边形.过A作AF⊥AC,AF交G

8、T于F,AF交DT于R.过B作BP⊥AF,垂足为P.过D作DE与CB的延长线垂直,垂足为E,DE交AF于H.∵∠BAD=9

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。