欢迎来到天天文库
浏览记录
ID:11484551
大小:42.50 KB
页数:8页
时间:2018-07-12
《勾股定理的几种证明方法》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、勾股定理的几种证明方法利用相似三角形证明有许多勾股定理的证明方式,都是基于相似三角形中两边长的比例。设ABC为一直角三角形,直角于角C(看附图).从点C画上三角形的高,并将此高与AB的交叉点称之为H。此新三角形ACH和原本的三角形ABC相似,因为在两个三角形中都有一个直角(这又是由于“高”的定义),而两个三角形都有A这个共同角,由此可知第三只角都是相等的。同样道理,三角形CBH和三角形ABC也是相似的。这些相似关系衍生出以下的比率关系:因为BC=a,AC=b,AB=c所以a/c=HB/aandb/c=AH/b可以写成a*a=c*HBandb*b=C*AH综合这两个
2、方程式,我们得到a*a+b*b=c*HB+C*AH=C*(HB+AH)=c*c换句话说:a*a+b*b=c*c[*]----为乘号欧几里得的证法在欧几里得的《几何原本》一书中提出勾股定理由以下证明后可成立。设△ABC为一直角三角形,其中A为直角。从A点划一直线至对边,使其垂直于对边上的正方形。此线把对边上的正方形一分为二,其面积分别与其余两个正方形相等。在正式的证明中,我们需要四个辅助定理如下:如果两个三角形有两组对应边和这两组边所夹的角相等,则两三角形全等。(SAS定理)三角形面积是任一同底同高之平行四边形面积的一半。任意一个正方形的面积等于其二边长的乘积。任意
3、一个四方形的面积等于其二边长的乘积(据辅助定理3)。证明的概念为:把上方的两个正方形转换成两个同等面积的平行四边形,再旋转并转换成下方的两个同等面积的长方形。其证明如下:设△ABC为一直角三角形,其直角为CAB。其边为BC、AB、和CA,依序绘成四方形CBDE、BAGF和ACIH。画出过点A之BD、CE的平行线。此线将分别与BC和DE直角相交于K、L。分别连接CF、AD,形成两个三角形BCF、BDA。∠CAB和∠BAG都是直角,因此C、A和G都是线性对应的,同理可证B、A和H。∠CBD和∠FBA皆为直角,所以∠ABD等于∠FBC。因为AB和BD分别等于FB和BC,
4、所以△ABD必须相等于△FBC。因为A与K和L是线性对应的,所以四方形BDLK必须二倍面积于△ABD。因为C、A和G有共同线性,所以正方形BAGF必须二倍面积于△FBC。因此四边形BDLK必须有相同的面积BAGF=AB²。同理可证,四边形CKLE必须有相同的面积ACIH=AC²。把这两个结果相加,AB²+AC²=BD×BK+KL×KC由于BD=KL,BD×BK+KL×KC=BD(BK+KC)=BD×BC由于CBDE是个正方形,因此AB²+AC²=C²。此证明是于欧几里得《几何原本》一书第1.47节所提出的勾股定理(又叫「毕氏定理」)说:「在一个直角三角形中,斜边边
5、长的平方等於两条直角边边长平方之和。」据考证,人类对这条定理的认识,少说也超过4000年!又据记载,现时世上一共有超过300个对这定理的证明!我觉得,证明多,固然是表示这个定理十分重要,因而有很多人对它作出研究;但证明多,同时令人眼花缭乱,亦未能够一针见血地反映出定理本身和证明中的数学意义。故此,我在这篇文章中,为大家选出了7个我认为重要的证明,和大家一起分析和欣赏这些证明的特色,与及认识它们的历史背境。证明一图一在图一中,DABC为一直角三角形,其中ÐA为直角。我们在边AB、BC和AC之上分别画上三个正方形ABFG、BCED和ACKH。过A点画一直线AL使其垂直
6、於DE并交DE於L,交BC於M。不难证明,DFBC全等於DABD(S.A.S.)。所以正方形ABFG的面积=2´DFBC的面积=2´DABD的面积=长方形BMLD的面积。类似地,正方形ACKH的面积=长方形MCEL的面积。即正方形BCED的面积=正方形ABFG的面积+正方形ACKH的面积,亦即是AB2+AC2=BC2。由此证实了勾股定理。这个证明巧妙地运用了全等三角形和三角形面积与长方形面积的关系来进行。不单如此,它更具体地解释了,「两条直角边边长平方之和」的几何意义,这就是以ML将正方形分成BMLD和MCEL的两个部分!这个证明的另一个重要意义,是在於它的出处。
7、这个证明是出自古希腊大数学欧几里得之手。欧几里得(EuclidofAlexandria)约生於公元前325年,卒於约公元前265年。他曾经在古希腊的文化中心亚历山大城工作,并完成了著作《几何原本》。《几何原本》是一部划时代的著作,它收集了过去人类对数学的知识,并利用公理法建立起演绎体系,对后世数学发展产生深远的影响。而书中的第一卷命题47,就记载著以上的一个对勾股定理的证明。证明二图二图二中,我们将4个大小相同的直角三角形放在一个大正方形之内,留意大正方形中间的浅黄色部分,亦都是一个正方形。设直角三角形的斜边长度为c,其余两边的长度为a和b,则由於大正方形的面积应
8、该等於4个
此文档下载收益归作者所有