欢迎来到天天文库
浏览记录
ID:17539649
大小:95.00 KB
页数:6页
时间:2018-09-02
《考研数学之概率论与数理统计学习计划》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、考研数学之概率论与数理统计学习计划 注意:本计划对应习题涵盖在以下教材中: 《概率论与数理统计》第三版浙江大学盛骤谢式千潘承毅编高等教育出版社 复习计划使用说明: (1)学习时间是针对复习知识点在大纲中的要求而建议应该使用的学习时间,平时如果学习时间不够,可利用周末的时间做调整。 (2)计划里明确了每章该看的知识点、该做的习题,后面备有大纲要求,学员要根据大纲要求合理学习知识点。 (3)每章复习结束后都必须做单元测试题,单元测试题是准确把握学员是否按照大纲要求掌握了本章内
2、容。学员在做复习完每章内容后,跟主管顾问要本章测试题。测试题做完后一定要把成绩反馈给你的主管顾问,以便主管顾问和教研组老师根据你的复习情况及时调整你的学习方法与内容。 (4)同学们在复习的时候一定要和你周围的同学、老师多交流学习心得。只有你总结出来的方法才是最适合你的方法。 (5)同学们在复习的过程中肯定要遇到一些疑难问题、做错的题目,一定要在第一时间把他整理到你的笔记本里,方便的时候可以答疑。 概率论与数理统计 第一章随机事件和概率 我们应该了解样本空间的概念,理解随机事件
3、的概念,并要熟练掌握随机事件的关系和运算法则,理解概率、条件概率的概念,掌握概率的基本性质。加法公式、乘法公式、减法公式、全概率公式、贝叶斯公式是概率的五个基本公式,应用它们再结合时间运算和概率的基本性质,可以解决不少有关随机事件概率的计算问题。 学习时间复习知识点与对应习题大纲要求2小时样本空间与随机事件的概念,事件的关系与运算,文氏图,事件运算法则和常用结论,概率的概念,概率的基本性质(6个性质),例(4页)1-3,习题(32页),1,21、了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算。2、理解概率、条
4、件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式。3、理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法。2-3小时古典概型,几何型概率,概率的加法定理,例(12页)1-8,习题(32页)4,5,8,9,12,132-3小时条件概率,概率的乘法定理,全概率公式,贝叶斯(Bayes)公式,事件的独立性,例(20页)2-6,例(28页)2-4,习题(34页)22,25,28,293小时总结回顾,本章应注
5、重对基本概念和基本公式的复习,以及应用概率的基本性质和基本公式计算独立性事件的概率。习题(33页)6,14,16,21,26,30,312小时本章测试题——检验自己是否对本章复习合格(合格成绩为80分以上),如果合格,继续进行下一章复习,如果不合格,总结自己的薄弱点要有针对性的对本章的内容进行复习或者到总部答疑。 第二章随机变量及其分布 随机变量是概率论和数理统计所要研究的基本对象,它是定义在样本空间上具有某种可测性的实值函数。离散型和连续型随机变量是最重要的两类随机变量。 学习时间复习知识点与对应习题大纲要求2.5-
6、3.5小时随机变量,离散型随机变量及其分布律,0-1分布,伯努利试验、二项分布,泊松分布,例(40页)1-4,习题(69页)2,4,5,9,10,131、理解随机变量的概念,理解分布函数的概念及性质;会计算与随机变量相联系的事件的概率。2、理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson)分布及其应用。3、掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布。4、理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布、指数分布及其应用,其中参数为的指数分布的概率密度为5、会求
7、随机变量函数的分布。2-3小时随机变量的分布函数,连续型随机变量及其概率密度,均匀分布,指数分布,例(48页)1,2,例(52页)1,2,习题(71页)15,18,21,222-3小时正态分布,随机变量的函数的分布,例(52页)3,例(62页)1-5,习题(73页)23,24,28,29,313小时总结回顾,本章注重对以下几个方面的复习(1)利用概率密度函数求概率;(2)常见的随机变量的分布及计算;(3)与其他各章内容结合的综合题及应用题。习题(69页)3,6,11,14,17,19,30,322小时本章测试题——检验自己是否对本章的复习合格(
8、合格成绩为80分以上),如果合格,继续进行下一章复习,如果不合格,总结自己的薄弱点要有针对性的对本章的内容进行复习或者到总部答疑。 第三章多维
此文档下载收益归作者所有