【数学】浙江省衢州市第一中学2014-2015学年高二上学期期中考试(文)

【数学】浙江省衢州市第一中学2014-2015学年高二上学期期中考试(文)

ID:16698429

大小:646.41 KB

页数:8页

时间:2018-08-24

【数学】浙江省衢州市第一中学2014-2015学年高二上学期期中考试(文)_第1页
【数学】浙江省衢州市第一中学2014-2015学年高二上学期期中考试(文)_第2页
【数学】浙江省衢州市第一中学2014-2015学年高二上学期期中考试(文)_第3页
【数学】浙江省衢州市第一中学2014-2015学年高二上学期期中考试(文)_第4页
【数学】浙江省衢州市第一中学2014-2015学年高二上学期期中考试(文)_第5页
资源描述:

《【数学】浙江省衢州市第一中学2014-2015学年高二上学期期中考试(文)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、www.ks5u.com浙江省衢州一中2014-2015学年高二上学期期中考试(文)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知空间两点,则()A.B.C.D.2.下列几何体的三视图是一样的为()A.圆台B.圆锥C.圆柱D.球3.下列函数在定义域内为增函数且是奇函数的是()A.B.C.D.4.若直线不平行于平面,则下列结论成立的是()A.平面内所有的直线都与直线异面;B.平面内不存在与直线平行的直线;C.平面内所有的直线都与直线相交;D.直

2、线与平面有公共点.5.已知数列满足,,则的值为()A.B.C.D.6.如图,正方体中,分别为棱的中点,在平面内且与平面平行的直线( )A.不存在B.有1条C.有2条D.有无数条7.已知为平面的一条斜线,为斜足,为在内的射影,直线在平面内,且,则()A.30°B.45° C.60° D.不确定8.若将一个真命题中的“平面”换成“直线”、“直线”换成“平面”后仍是真命题,则该命题称为“可换命题”.下列四个命题:①垂直于同一平面的两直线平行;②垂直于同一平面的两平面平行;③平行于同一直线的两直线平行;④平行于同一

3、平面的两直线平行.其中是“可换命题”的是()A.①②B.①④C.①③D.③④9.如图所示,点在正方形所在平面外,平面,,则与所成的角是( )A.90°  B.60° C.45°  D.30°10.棱长为的正方体在空间直角坐标系中移动,但保持点8分别在轴、轴上移动,则点到原点的最远距离为()A.B.C.5D.4二、填空题:本大题共7小题,每小题4分,共28分.11.各项均为实数的等比数列中,,,则_____.12.将函数图象上的所有点向左平移个单位长度,则所得图象的函数解析式是__________.13.已知

4、某几何体的三视图(单位:)如图所示,则该几何体的体积是_______.14.若的直观图是边长为2的正三角形,则的面积是_____.15.已知函数在处取得最小值,则.16.已知异面直线,过不在上的任意一点,下列三个结论:①一定可作直线与都相交;②一定可作直线与都垂直;③一定可作直线与都平行;其中所有正确的序号是__________.17.若不存在整数满足不等式,则实数的取值范围是____.三、解答题:本大题共5小题,共14+14+14+15+15=72分。解答应写出文字说明、证明过程或演算步骤。18.如图,在

5、底面为直角梯形的四棱锥中,,,.8(1)若在取一点F,满足,求证:(2)求证:19.在直角坐标系中,以坐标原点为圆心的圆与直线:相切.(1)求圆的方程;(2)若圆上有两点关于直线对称,且,求直线的方程 20.如图,在中,分别是上的点,且,将沿折起到的位置,使,如图。(1)求证:.(2)若,求与平面所成角的正弦值.(3)当点在何处时,的长度最小,并求出最小值.821.已知函数,数列满足.(1)求数列的通项公式;(2)令,求;(3)令,,对一切成立,求最小正整数.22.已知函数,,.(1)若,试判断并证明函数的

6、单调性;(2)当时,求函数的最大值的表达式8高二数学(文)答案19.在直角坐标系中,以坐标原点为圆心的圆与直线:相切.(1)求圆的方程;(2)若圆上有两点关于直线对称,且,求直线的方程 (1)依题意,圆O的半径r等于原点O到直线x-y=4的距离,即r==2.所以圆O的方程为x2+y2=4.(2)由题意,可设直线MN的方程为2x-y+m=0.则圆心O到直线MN的距离d=.由垂径分弦定理得:+()2=22,即m=±.所以直线MN的方程为:2x-y+=0或2x-y-=0.,20.如图,在中,分别是上的点,且8,将

7、沿折起到的位置,使,如图。(1)求证:(2)若,求与平面所成角的正弦值(3)当点在何处时,的长度最小,并求出最小值21.已知函数,数列满足.(1)求数列的通项公式;(2)令,求;(3)令,,对一切成立,求最小正整数.(1)∵,∴{an}是以2为公差的等差数列.又a1=1,∴822.已知函数,,.(1)若,试判断并证明函数的单调性;(2)当时,求函数的最大值的表达式(1)判断:若,函数在上是增函数.证明:当时,,在区间上任意,设,所以,即在上是增函数.88

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。