量子思考题与解答-2

量子思考题与解答-2

ID:16349893

大小:910.50 KB

页数:18页

时间:2018-08-09

量子思考题与解答-2_第1页
量子思考题与解答-2_第2页
量子思考题与解答-2_第3页
量子思考题与解答-2_第4页
量子思考题与解答-2_第5页
资源描述:

《量子思考题与解答-2》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、量子力学思考题1、以下说法是否正确:(1)量子力学适用于微观体系,而经典力学适用于宏观体系;(2)量子力学适用于不能忽略的体系,而经典力学适用于可以忽略的体系。解答:(1)量子力学是比经典力学更为普遍的理论体系,它可以包容整个经典力学体系。(2)对于宏观体系或可以忽略的体系,并非量子力学不能适用,而是量子力学实际上已经过渡到经典力学,二者相吻合了。2、微观粒子的状态用波函数完全描述,这里“完全”的含义是什么?解答:按着波函数的统计解释,波函数统计性的描述了体系的量子态。如已知单粒子(不考虑自旋)波函数,则不仅可

2、以确定粒子的位置概率分布,而且如粒子的动量、能量等其他力学量的概率分布也均可通过而完全确定。由于量子理论和经典理论不同,它一般只能预言测量的统计结果,而只要已知体系的波函数,便可由它获得该体系的一切可能物理信息。从这个意义上说,有关体系的全部信息显然已包含在波函数中,所以说微观粒子的状态用波函数完全描述,并把波函数称为态函数。3、以微观粒子的双缝干涉实验为例,说明态的叠加原理。解答:设和是分别打开左边和右边狭缝时的波函数,当两个缝同时打开时,实验说明到达屏上粒子的波函数由和的线性叠加来表示,可见态的叠加不是概率

3、相加,而是波函数的叠加,屏上粒子位置的概率分布由确定,中出现有和的干涉项,和的模对相对相位对概率分布具有重要作用。4、量子态的叠加原理常被表述为:“如果和是体系的可能态,则它们的线性叠加也是体系的一个可能态”。(1)是否可能出现;(2)对其中的与是任意与无关的复数,但可能是时间的函数。这种理解正确吗?解答:(1)可能,这时与按薛定谔方程的要求随时间变化。(2)如按这种理解已知和是体系的可能态,它们应满足波方程式如果和的线性叠加也是体系的可能态,就必须满足波方程式,然而,18可见,只有当时,才有。因此,中,与应是

4、任意复常数,而不是时间的复函数。如上式中态不含时间,则有。5、(1)波函数与、是否描述同一态?(2)下列波函数在什么情况下才是描述同一态?这里是复常数,是实常数。解答:(1)与、描述的相对概率分布完全相同,如对空间和两点的相对概率,故与、均描述同一态。(2)由于任意复数,以及显然,只有当复数,即,且时,均描述同一态。6、量子力学规律的统计性与经典统计力学的统计规律有何不同?量子力学统计规律的客观基础是什么?解答:经典统计力学的基础是牛顿力学,例如一定量气体中每个气体分子在每个瞬时都有确定的位置和动量,每个分子都

5、按牛顿运动定律而运动,而大量分子组成的体系存在着统计规律。例如,对个别分子不存在温度这个概念,处于平衡态的理想气体的温度是分子平均平动动能的量度。与经典力学不同,量子力学不是像经典统计力学那样建立起来的宏观理论,波函数的统计解释是量子力学的理论结构中的基本假设。在传统的解释中,量子力学规律的统计性被认为是由波粒二象性所决定的微观粒子的本质特性,是观测仪器对微观粒子的不可控制的作用的结果。如类似经典粒子那样,进一步问:统计性的微观实质是什么?依据是什么?则被认为是超出了基本假设限度,因而是没有意义的,也是没有必要

6、的。7、量子力学为什么要用算符表示力学量?表示力学量的算符为什么必须是线性厄密的?解答:用算符表示力学量,是量子体系所固有的波粒二象性所要求的,这正是量子力学处理方法上的基本特点之一。我们知道,表示量子态的波函数是一种概率波,因此,即是在一确定的量子态中,也并非各力学量都有完全确定值,而是一般的表现为不同数值的统计分布,这就注定了经典力学量的表示方法(可由运动状态完全决定)不再使用,因此需要寻求新的表示方法。下面从力学量的平均值的表示式出发,说明引入算符的必要性。如果体系处于中,则它的位置平均值为18类似地,它

7、的动量的平均值也可表示为若要求出上述积分,必须将p表示为x的函数,然而这是做不到的,因为按不确定关系P(x)的表示是无意义的,因此不能直接在坐标表象中用上式求动量平均值。我们可先在动量表象中求出动量平均值,然后再转换到坐标表象中去。利用有作代换,并对积分得(推广到三维)可见,要在坐标表象中计算动量平均值,那么动量矢量恰与算符相当。实际上,任何一个力学量在非自身表象中计算平均值时,都与相应的算符相当,自然会引入算符表示力学量的概念。用算符表示力学量问题还可以从另一个角度来说明。我们知道,在量子力学中,力学量之间的

8、关系从其数值是否能同时确定来考虑,有相互对易与不对易两种,而经典力学量之间都是对易的,因此经典力学量的表示方法不能适用于量子力学,然而数学运算中算符与算符之间一般并不满足交换律,也就是存在不对易情况,因此用算符表示力学量是适当的。力学量必须用线性厄密算符表示,这是由量子态叠加原理所要求的;任何力学量的实际测量值必须是实数,因此它的本征值也必为实数,这就决定了力学量必须由厄密算符来表示。

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。