欢迎来到天天文库
浏览记录
ID:16205670
大小:551.50 KB
页数:15页
时间:2018-08-08
《巴特沃斯低通滤波器设计》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、课程设计报告题目:巴特沃思低通滤波器的设计学院专业学号学生姓名指导教师13目录低通滤波器设计要求:1滤波器简介2设计原理与设计过程31、滤波器设计中的归一化与去归一化32、滤波器设计中的逼近问题33、巴特沃思(Butterworth)响应44、电路实现75、matlab仿真9小结1313低通滤波器设计要求:通带角频率=90rad/s阻带角频率=150rad/s通带内允许最大衰减=3dB阻带内允许最小衰减=10dB13滤波器简介滤波器是一种对信号有处理作用的器件或电路。滤波器是给出规定响应的一个网络,是用
2、一组激励——响应关系表征的系统,如图1所示。滤波器的主要作用是让有用信号尽可能无衰减的通过,对无用信号尽可能大的反射。按处理信号的不同,滤波器可分为模拟滤波器和数字滤波器。模拟滤波器可处理模拟的或连续时间信号,数字滤波器可处理数字信号;按输出信号的不同频率,可分为低通滤波器、高通滤波器、带通滤波器、带阻滤波器和全通滤波器。其中模拟滤波器,按构成元件的不同又可分为有源滤波器和无源滤波器两种。图1-1通常用滤波器的转移函数表征滤波器的特性,设响应的象函数为,激励的象函数为,则转移函数为在正弦情况下,
3、,相应地,上式的频域响应函数可写为其中,为幅频函数。定义相频函数定义群时延函数为滤波器的幅频函数和相频函数或群时延函数,共同表征了这个滤波器的特性。13设计原理与设计过程1、滤波器设计中的归一化与去归一化对于实际电路,电路中的电阻元件、电容元件、电感元件的数值分布范围很大,在电路分析、设计的计算过程中,所需处理的数据的大小相差甚远,这样,往往容易产生计算误差。同时,综合的理论依据和方法与函数的大小无关,因此,为便于理论分析和计算,通常将电路参数作归一化处理,以便产生通用的计算公式和图表。采用归一化的方法
4、,不仅便于分析和计算,也可避免误差的产生。归一化处理包括阻抗归一化和频率归一化两种。如果将网络的全部阻抗除以常数,相当于所有的电阻值、电感值除以,电容值乘以,这一过程称为阻抗归一化,称为阻抗归一化系数。同理,可将角频率除以常数,这一变换称为频率归一化,称为频率归一化系数。为使网络函数不受频率变换的影响,变换前后各元件的阻抗值应保持不变,因此,电阻值R不受变换的影响,电感值L和电容值C应乘以。在设计过程中,按各种综合方法得到的网络参数通常为归一化参数,因此还需要将这些参数转换为满足实际要求的参数,这一逆运
5、算称为去归一化。2、滤波器设计中的逼近问题各种理想滤波器的幅频特性不具有可实现性,因为它们具有非因果性。对于RLC电路来说,转移函数的幅度通常是角频率的函数,因此,在角频率0~之间,幅度不可能是常数,若幅度在角频率0~之间是常数,则它在所有角频率范围即0~处都是常数。因此,必须对理想特性作一定的修正,使其具有可实现性,同时修改后的性能在一定误差范围内也能满足要求。这就是所谓的逼近问题,即用具有可实现性的转移函数来描述所需的技术要求,它的幅频特性、相频特性或群时延函数与所求电路的特性近似。通常,修正的方式
6、为,允许幅频函数在通带内有一定的衰减,在阻带内有微弱的信号存在,并在两者之间增加过渡带,如图1所示,称为滤波器的容差图。其中,为通带内允许最大衰减,为阻带内允许最小衰减,称为通带角频率,称为阻带角频率。13图1滤波器的容差图在模拟滤波器的逼近问题中,有两个基本约束条件。第一是关于传递函数的性质。由网络理论中有关网络函数的基本定理可知,一个具有可实现的模拟滤波器的转移函数是实有理函数。第二是关于构造过程中的约束。构造的转移函数只能唯一满足幅频函数的要求或唯一满足相频函数的要求,而不可能同时满足幅频函数和相
7、频函数的要求。关于逼近问题已有许多成熟的方法,如巴特沃斯(Butterworth)响应,切比雪夫(Chebyshev)响应、倒切比雪夫响应、椭圆响应、贝塞尔-汤姆逊响应等,它们各具有不同的特性。3、巴特沃思(Butterworth)响应一个n阶低通巴特沃思滤波器的幅频函数为式中,为通带下边界角频率;是小常数,其值应满足。可看出该幅频函数在处具有最大平直的特点,而且随着的增大而单调下降,因此,它可以用来逼近低通滤波器,逼近的程度随n的增大而增高。令,则其归一化表达式可写为将带入上式可得13令,可解出的极点
8、,其表达式为所以的全部极点位于一个单位圆上,位于左半平面的极点有k=1,2,3,…,n用位于左半平面的这些极点构造的的分母多项式称为巴特沃思多项式,相应地,n阶巴特沃思低通函数可写为表1给出了n=1,2,…,7时的巴特沃思多项式。n1234567表1巴特沃思多项式上式中,常数的作用是调整通带内允许的最大衰减,使其可小于3dB。逼近过程中,需要确定的参数为和巴特沃斯多项式的阶数n,其中,通带内允许最大衰减确定了的大小;阶数n的大小取决于阻带内
此文档下载收益归作者所有