全国研究生数学建模竞赛一等奖论文(e题)-乘用车物流运输计划问题

全国研究生数学建模竞赛一等奖论文(e题)-乘用车物流运输计划问题

ID:16126702

大小:2.10 MB

页数:82页

时间:2018-08-08

全国研究生数学建模竞赛一等奖论文(e题)-乘用车物流运输计划问题_第1页
全国研究生数学建模竞赛一等奖论文(e题)-乘用车物流运输计划问题_第2页
全国研究生数学建模竞赛一等奖论文(e题)-乘用车物流运输计划问题_第3页
全国研究生数学建模竞赛一等奖论文(e题)-乘用车物流运输计划问题_第4页
全国研究生数学建模竞赛一等奖论文(e题)-乘用车物流运输计划问题_第5页
资源描述:

《全国研究生数学建模竞赛一等奖论文(e题)-乘用车物流运输计划问题》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、参赛密码(由组委会填写)全第十一届华为杯全国研究生数学建模竞赛学校西安理工大学参赛队号10700002队员姓名1.柯俊山2.朱文奇3.胡凯-37-参赛密码(由组委会填写)第十一届华为杯全国研究生数学建模竞赛题目乘用车物流运输计划问题摘要:本文主要解决的是乘用车整车物流的运输调度问题,通过对轿运车的空间利用率和运输成本进行优化,建立整数规划模型,设计了启发式算法,求解出了各种运输条件下的详细装载与运输方案。针对前三问,由于不考虑目的地和轿运车的路径选择,将问题抽象为带装载组合约束的一维装车问题,优化目标是在保证完成运输任务的前提下尽可能满载,选择最优装载组合方案使得所使用的轿运车数

2、量最少。对于满载的条件,将其简化为考虑轿运车的空间利用率最大,最终建立了空间利用率最大化和运输成本最小化的两阶段装载优化模型。该模型类似于双目标规划模型,很难求解。为此,将空间利用率最大转换为长度余量最少,并为其设定一个经验阈值,将问题转换为求解整数规划问题,利用分支定界法进行求解。由于分支定界法有时并不能求得最优解,设计了一种基于阈值的启发式调整优化算法。最后,设计了求解该类问题的通用算法程序,并对前三问的具体问题进行了求解和验证。通过求解得出,满足前三问运输任务的1-1型轿运车和1-2型轿运车数量如下表所示(具体的乘用车装载方案见表2、表5、表7):第一问第二问第三问1-11

3、612251-2215针对问题四,其是在问题一的基础上加入了整车目的地的条件,需要考虑最优路径的选择。在运输成本上,加入了行驶里程成本,因而可以建立所使用的轿运车数量最少和总里程最少的双目标整数规划模型。-37-对于此种模型,可以采用前三问所设计的通用算法进行求解。此时,需要重新设计启发式调整优化算法。为此,根据路线距离的远近和轿运车数量需要满足的比例约束条件设计了新的调整优化方案。最终求得的各目的地的轿运车使用数量如下表所示,此时的总路程为6404,具体装载方案见表9。ABCD总数1-1型1695211-2型40004总量569525针对问题五,作为问题四的扩展研究,类似于问题

4、四建立了双目标规划模型。由于乘用车的种类达到了45种,导致轿运车的装载组合方案急剧增多。如果仍采用穷举法确定装载组合方案,将产生“组合爆炸”。为此,采用基于排样算法的装载优化算法,来避免这种现象。这种算法的基本流程是:首先按照乘用车的宽、高将乘用车分为“高”、“低窄”、“低宽”三种车型;然后根据不同类型的乘用车在不同目的地的需求量,构建关系树;接着根据关系树和启发式调整优化算法来确立初步配载方案;最后验证配载方案是否满足约束条件以求得最终方案。其中,启发式调整优化算法仍然是基于经验的,这里主要考虑轿运车上层空间的利用率最大化和距离较远的点以尽可能地减少轿运车的数量,同时也要满足不

5、同轿运车型之间的数量比例约束。最终求得的各目的地轿运车的详细使用量如下表所示,并且完成运输任务所需行驶的总里程为35140。序号目的地A目的地B目的地C目的地D目的地E余量101470002070100131100011041203000520008060000025700400080115000950000010430101目的地总量342529111927轿运车总量118关键词:整车物流整数规划分支定界法经验阈值启发式调整优化排样算法-37-问题重述1.1问题背景整车物流指的是按照客户订单对整车快速配送的全过程。随着我国汽车工业的高速发展,整车物流量,特别是乘用车的整车物流量

6、迅速增长。乘用车生产厂家根据全国客户的购车订单,向物流公司下达运输乘用车到全国各地的任务,物流公司则根据下达的任务制定运输计划并配送这批乘用车。为此,物流公司首先要从他们当时可以调用的“轿运车”中选择出若干辆轿运车,进而给出其中每一辆轿运车上乘用车的装载方案和目的地,以保证运输任务的完成。“轿运车”是通过公路来运输乘用车整车的专用运输车,根据型号的不同有单层和双层两种类型,而单层轿运车实际中很少使用,本题仅考虑双层轿运车。在确保完成运输任务的前提下,物流公司追求降低运输成本。但由于轿运车、乘用车有多种规格等原因,当前很多物流公司在制定运输计划时主要依赖调度人员的经验,在面对复杂的

7、运输任务时,往往效率低下,而且运输成本不尽理想。1.2已知信息(1)每种轿运车上、下层装载区域均可等价看成长方形,各列乘用车均纵向摆放,相邻乘用车之间纵向及横向的安全车距均至少为0.1米,下层力争装满,上层两列力求对称,以保证轿运车行驶平稳。(2)1-1型及2-2型轿运车上、下层装载区域相同;第五问中1-2型轿运车上、下层装载区域长度相同,但上层比下层宽0.8米。(3)受层高限制,高度超过1.7米的乘用车只能装在1-1、1-2型下层,2-2型上、下层均不能装载高度超过1.7米的乘

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。