义务教育2017-学年高中数学人教a版选修2-3课堂导学:1.2.3组合(一)word版含解析

义务教育2017-学年高中数学人教a版选修2-3课堂导学:1.2.3组合(一)word版含解析

ID:16118303

大小:239.00 KB

页数:6页

时间:2018-08-08

义务教育2017-学年高中数学人教a版选修2-3课堂导学:1.2.3组合(一)word版含解析_第1页
义务教育2017-学年高中数学人教a版选修2-3课堂导学:1.2.3组合(一)word版含解析_第2页
义务教育2017-学年高中数学人教a版选修2-3课堂导学:1.2.3组合(一)word版含解析_第3页
义务教育2017-学年高中数学人教a版选修2-3课堂导学:1.2.3组合(一)word版含解析_第4页
义务教育2017-学年高中数学人教a版选修2-3课堂导学:1.2.3组合(一)word版含解析_第5页
资源描述:

《义务教育2017-学年高中数学人教a版选修2-3课堂导学:1.2.3组合(一)word版含解析》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、课堂导学三点剖析一、有限制条件的组合问题——“在”与“不在”问题【例1】一个口袋内装有大小相同的7个白球和1个黑球.(1)从口袋内取出3个球,共有多少不同的取法?(2)从口袋内取出3个球,使其中含有1个黑球,共有多少种取法?(3)从口袋内取出3个球,使其中不含黑球,共有多少取法?解析:(1)从口袋内的8个球中取出3个球,取法种数是=56答:从口袋内取出3个球,共有56种取法.(2)从口袋内取出的3个球中有1个是黑球,于是还要从7个白球中再取出2个,取法种数是=21.答:取出含有1个黑球的3个球,共有21种取法.(3)由于所取出的3个球中不含

2、黑球,也就是要从7个白球中取出3个球,取法种数是=35答:取出不含黑球的3个球,共有35种取法.温馨提示(1)从n个不同的元素中,每次取出m个不同元素的组合,其中一个必须在内.这类问题的思考方法是先将这个特定元素置于其内,则只需由余下的n-1个元素中每次取出m-1个元素,再汇总原置于内的特定元素,所以符合条件的种数为.(2)从n个不同的元素中,每次取出m个不同元素的组合,其中某一元素不能在内.这类问题有两种思考方法:①将这个特定元素选出,而从其余的n-1个元素中每次取m个不同元素的组合,这些组合显然必符合条件,为种;②以间接法解之,即从不带

3、附加条件的总数中,减去不合本题条件的数,为-种.二、有限制条件的组合问题——“至多”“至少”问题【例2】从4台甲型和5台乙型电视机中任意取出3台,其中至少要有甲型与乙型电视机各一台,则不同的取法共有()A.140种B.84种C.70种D.35种思路分析:取出的3台电视机中要求至少有甲型与乙型各一台,它包括两种可能:2甲1乙或1甲2乙,所以可用分类计数原理和分步计数原理解决,另外也可以采用间接法.解法一从4台甲型电视机中取2台且从5台乙型电视机中取1台,有种取法;从4台甲型电视机中取1台且从5台乙型电视机中取2台有种取法,所以取出的3台电视机

4、中至少要有甲型与乙型各一台的取法共有+=70(种).解法二从所有的9台电视机中取3台有种取法,其中全为甲型的有种取法,全为乙型的有种取法,则至少有甲型与乙型各一台的取法有--=70(种).答案:C温馨提示本题解法一用了直接法,解法二用的是间接法;本题最易出现如下取法错误=140(种).这样计算就出现了重复.三、求组合题的原则——“正难则反”【例3】空间中有8个点,有且只有4个点共面,共可确定多少个平面?解析:利用间接法:不考虑限制条件,从8个点中任取3个点共有种取法,由于其中4个点共面,从这4个点中任取3个的组合数为,故一共确定的平面数为:

5、-+1=53.(这里加1是因为多减了一个平面).温馨提示有些计数问题正面情况太繁杂或直接法难以入手时,往往从问题的反面考虑更易解决.各个击破【类题演练1】从7名男同学和5名女同学中,选出5人,分别求符合下列条件的选法种数.(1)A,B必须当选;(2)A,B必不当选;(3)A,B不全当选;(4)至少有两名女同学当选;(5)选出3名男同学和2名女同学,分别担任体育委员、文娱委员等五种不同的工作,但体育委员必须男同学担任,文娱委员必须女同学担任.解析:(1)只要从其余的10人中再选3人即可,有=120(种).(2)5个都选自另外10人,即有=25

6、2(种).(3)法一:分类如下:A,B中有一人当选:有种.A,B都不入选:有种.所以共有+=672(种).法二:-=672(种)(4)间接法:=596(种)(5)法一:分三步:第一步:选一男一女分别担任体育委员、文娱委员的方法有种;第二步:选出两男一女,补足5人的方法有种;第三步:为这三人分配职务,有种;由分步计数原理,共有安排方法··=12600(种)法二:分两步:第一步:选出3名男同学,2名女同学,有种方法;第二步:分配职务有··种.根据分步计数原理,共有安排方法····=12600(种)【变式提升1】某学习小组8名同学,从男生中选出2

7、人,从女生中选出1人参加数学、物理、化学三种竞赛,要求每科均有一人参加,共有180种不同的选法,那么该小组中男、女同学各有多少人?解析:设有男同学x人,则女同学有8-x人,第一步,先从x名男同学中任选2名,有种选法;第二步从8-x名女同学中任选1名,有种选法,两次共选出3名同学,这三名同学的组合为·;第三步,将这3名同学全排列,有种排法.因为每个排列都对应一种参赛方式,所以,共有·=180种选法,其中x的取值范围是2≤x≤7,x∈N*.解方程,得x=5或6,8-x=3或2,即男生5人,女生3人;或男生6人,女生2人.【类题演练2】从全班48

8、人中选出5人参加东湖水污染情况调查小分队,假若班长和副班长至少有一人在内,有多少种选法?解析:这是一个有限制条件的组合问题,要抓住题中的关键字眼“至少”进行正确的分类.班长、副班

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。