欢迎来到天天文库
浏览记录
ID:11773840
大小:191.50 KB
页数:5页
时间:2018-07-13
《义务教育2017-学年高中数学人教a版选修2-3课堂导学:1.2.1排列(一)word版含解析》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、课堂导学三点剖析一、没有限制条件的排列问题【例1】从甲、乙、丙3名同学中选出2名参加某天的一项活动,其中1名同学参加上午的活动,1名同学参加下午的活动,有多少种不同的方法?解析:从甲、乙、丙3名同学中任选2名分别参加上午、下午的活动,对应于从3个元素中任取2个元素的一个排列,因此共有=3×2=6种不同的方法.温馨提示判断是否是排列问题,关键是看是否与顺序有关.此问题的活动分上午和下午.甲参加上午的活动,乙参加下午的活动与甲参加下午的活动,乙参加上午的活动是不同的选派方法,与顺序有关.因此,此题是排列问题.二、有限制条件的
2、排列问题【例2】用0,1,2,3,4,5,6可以组成多少个没有重复数字的六位数?解法一:从特殊元素入手,0只能放在除十万位外的其他五个数位上,故共组成=4320个没有重复数字的六位数.解法二:从特殊位置入手,十万位不能排0,可先从其他6个数字中选出一个数字排到该位上,其他位置可随意排列,故共组成=4320(个)没有重复数字的六位数.解法三:用排除法:先不考虑任何限制条件,共组成个六位数,但需去掉0在十万位上的情形,有种,故共有-=4320(个)没有重复数字的六位数.温馨提示有限制条件的排列问题,往往先考虑有限制条件的特殊
3、元素或特殊位置,这可叫“特殊元素(位置)优先法”.三、处理排列问题的典型问题和方法【例3】三个女生和五个男生排成一排.(1)如果女生必须全排在一起,可有多少种不同的排法?(2)如果女生必须全分开,可有多少种不同的排法?(3)如果两端都不能排女生,可有多少种不同的排法?(4)如果两端不能都排女生,可有多少种不同的排法?解析:(1)(捆绑法)因为三个女生必须在一起,所以可以把她们看成一个整体,这样同五个男生合在一起共有六个元素,排成一排共有种不同排法.对于其中的每一种排法,三个女生之间又都有种不同的排法,因此共有·=4320
4、种不同的排法.(2)(插空法)要保证女生全分开,可先把五个男生排好,每两个相邻的男生之间一个空,这样共有六个位置,再把三个女生插入这六个位置中,使得每个位置至多有一个女生插入,就能保证任意两个女生都不相邻,因此共有·=14400种不同的排法.(3)(位置分析法):因为两端不能排女生,所以两端只能挑选5个男生中的2人,有种不同的排法,对于其中的任意一种排法,其余6位都有种排法,所以共有·=14400种不同的排法.(4)因为只要求两端不都排女生,所以如果首位排了男生,则末位就不再受条件限制了,这样可以有·种不同的排法;如果首
5、位是女生,有种排法,这时末位就只能排男生,共有··种不同的排法,所以共有·+··=36000种不同的排法.各个击破【类题演练1】5本不同的书,从中选3本送给3名同学,每人各1本,共有多少种不同的选法?解析:不同选法的种数有=5×4×3=60(种).【变式提升1】某信号兵用红、黄、蓝3面旗从上到下挂在竖直的旗杆上表示信号,每次可以任挂1面、2面或3面,并且不同的顺序表示不同的信号,一共可以表示多少种不同的信号?解析:用1面旗表示的信号有种,用2面旗表示的信号有种,用3面旗表示的信号有种,根据分类计数原理,所求的信号数是++
6、=3+3×2+3×2×1=15(种).【类题演练2】某年级开设语文、政治、外语、体育、数学、物理、化学七门课程,依下列条件课程表有多少种不同排法.(1)一天开设七门不同课程,其中体育不排第一节也不排在第七节;(2)一天开设四门不同课程,其中体育不排第一节也不排在第四节.解析:(1)从元素考虑先满足体育后再安排其他课,从2-6节中任取一节排体育有种排法,再从剩下的6节课中排其它课程有种排法.依乘法原理有·=3600(种).【变式提升2】用0,1,2,…9十个数字可组成多少个没有重复数字的:(1)五位奇数?(2)大于3000
7、0的五位偶数?解析:(1)要得到五位奇数,末位应从1,3,5,7,9五个数字中取,有种取法.取定末位数字后,首位就有除这个数字和0之外的八种不同取法.首末两位取定后,十个数字还有八个数字可供中间的十位,百位与千位三个数位选取,共有种不同的安排方法.因此由分步计数原理共有5×8×=13440个没有重复数字的五位奇数.(2)要得偶数,末位应从0,2,4,6,8中选取,而要得比30000大的五位偶数,可分两类:①末位数字从0,2中选取,则首位可取3、4、5、6、7、8、9中任一个,共7种选取方法,其余三个数位就有除首末两个数位
8、上的数字之外的八个数字可以选取,共种取法.所以共有2×7×种不同情况.②末位数字从4、6、8中选取,则首位应从3、4、5、6、7、8、9中除去末位数字的六个数字中选取,其余三个数位仍有种选法,所以共有3×6×种不同情况.由分类计数原理,共有2×7×+3×6×=10752个比30000大的无重复数字的五位偶数.【类题演
此文档下载收益归作者所有