欢迎来到天天文库
浏览记录
ID:16107138
大小:54.00 KB
页数:9页
时间:2018-08-08
《薄膜制备与表面科学-mbe》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、膜制备与表面科学:MBE一、定义分子束外延是一种新的晶体生长技术,简记为MBE。其方法是将半导体衬底放置在超高真空腔体中,和将需要生长的单晶物质按元素的不同分别放在喷射炉中(也在腔体内)。由分别加热到相应温度的各元素喷射出的分子流能在上述衬底上生长出极薄的(可薄至单原子层水平)单晶体或几种物质交替的超晶格结构。二、起源与发展(1)20世纪70年代初由美国BELL实验室开创(2)70年代中期,我国中科院物理所和半导体所开始对MBE的探索,80年出产首台MBE,91年长春召开第1届学术研讨会(3)1986年,GaAs/Al-GaAs系材料开始
2、进入器件应用阶段(4)目前,研发人造结构(自然界不存在)三、分子束外延特点(1)生长速率极慢,大约1um/小时,相当于每秒生长一个单原子层,因此有利于实现精确控制厚度、结构与成分和形成陡峭的异质结构等。实际上是一种原子级的加工技术,因此MBE特别适于生长超晶格材料。(2)外延生长的温度低,因此降低了界面上热膨胀引入的晶格失配效应和衬底杂质对外延层的自掺杂扩散影响。(3)由于生长是在超高真空中进行的,衬底表面经过处理可成为完全清洁的,在外延过程中可避免沾污,因而能生长出质量极好的外延层。在分子束外延装置中,一般还附有用以检测表面结构、成分和
3、真空残余气体的仪器,可以随时监控外延层的成分和结构的完整性,有利于科学研究。(4)MBE是一个动力学过程,即将入射的中性粒子(原子或分子)一个一个地堆积在衬底上进行生长,而不是一个热力学过程,所以它可以生长按照普通热平衡生长方法难以生长的薄膜。(5)MBE是一个超高真空的物理沉积过程,既不需要考虑中间化学反应,又不受质量传输的影响,并且利用快门可以对生长和中断进行瞬时控制。因此,膜的组分和掺杂浓度可随源的变化而迅速调整。一、分子束外延与真空蒸发技术的异同点相同点:从分子一个一个地粘附在从衬底表面形成外延淀积,本质相同不同点:(1)普通真空
4、蒸发系统的真空度为10-6托左右,系统内残留气体分子有相当一部分会渗入到外延层,因此要求有较高的淀积速度,以免残留气体渗入;而分子束外延在10-10托以上超高温真空进行,从喷射炉出来的分子到达衬底前与残留气体分子碰撞可忽略不计,外延生长速度可以控制到很低。(2)分子束外延厚度可以精确控制实现单分子层外延。(3)分子束外延的衬底和分子源各自独立,衬底温度比液相和气相外延温度低。(4)分子束外延可以根据需要在喷射室安装多个喷射炉,分别调制各组分的分子束流,使外延层化学组分和元素种类任意改变。一、分子束外延技术的应用MBE作为一种高级真空蒸发形
5、式,因其在材料化学组分和生长速率控制等方面具有优越性,非常适合于各种化合物半导体及其合金材料的同质结和异质结外延生长,并在技术半导体场效应晶体管(MESFET)、高电子迁移率晶体管(HEMT)、异质结构场效应晶体管(HFET)、异质结双极晶体管(HBT)等微波、毫米波器件及电路和光电器件制备中发挥了重要作用。二、分子束外延的设备结构(1)超高真空系统:不锈钢真空室,极限真空度10-10托以上,最新MBE把外延和随后检测系统分别放在不同真空室内,中间有传递样品的阀门,可避免对测试系统玷污。(2)分子束发生系统:分子束由喷射炉产生,由NB或超
6、纯石墨制成,避免喷射炉和加热器本身玷污,外围设液氮屏蔽;为控制流量,喷射口前方加上准直狭缝或挡板。(3)衬底:多个自由度的机械装置,以便调节衬底位置,衬底加热器用钼板制成,衬底可用样品夹固定在加热器上,也可以用In或Ga作为衬底与加热器之间的接触物,在外延衬底的温度下,In或Ga成为液体,利用液体表面张力把衬底固定,这种方法衬底受热比较均匀。(4)监测系统:四能质谱仪来控制真空系统内残留气体组分以及电子束流强度,把有关信息输到计算机,对外延进行控制;若要了解表面结构、组分和生长过程,则装上低能电子谱射仪,高能电子衍射仪和俄歇谱仪等表面分析
7、仪器一、生长工艺-分子束外延生长硅一般来说,硅分子束外延是指与硅有关的分子束外延,既包括在硅衬底上同质外延生长Si薄膜,也包括在硅衬底上异质外延生长其他系统的分子束外延技术。(1)表面制备集成电路制造过程中的硅片清洗是指在氧化、光刻、外延、扩散和引线蒸发等工序前,采用物理或化学的方法去除硅片表面的污染物和自身氧化物,以得到符合清洁度要求的硅片表面的过程。硅片表面的污染物通常以原子、离子、分子、粒子或膜的形成,以物理吸附或化学吸附的方式存在于硅片表面或硅片自身氧化膜中。(2)表面制备的清洁l溅射清洁处理通过溅射、退火往复循环处理,可获得原子
8、级的清洁表面。这是表面科学中常用的表面清洁方法。优点在于对表面污染不敏感,能够有效去除各种表面层,是一个物理过程。缺点是,溅射时引起的晶格残余损失不易恢复,想获得非常平整的表面有些困难,因此现
此文档下载收益归作者所有