计量经济学复习题

计量经济学复习题

ID:16075869

大小:387.00 KB

页数:12页

时间:2018-08-07

计量经济学复习题_第1页
计量经济学复习题_第2页
计量经济学复习题_第3页
计量经济学复习题_第4页
计量经济学复习题_第5页
资源描述:

《计量经济学复习题》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、2.1.对于人均存款与人均收入之间的关系式使用美国36年的年度数据得如下估计模型,括号内为标准差:=0.538  (1)的经济解释是什么?(2)和的符号是什么?为什么?实际的符号与你的直觉一致吗?如果有冲突的话,你可以给出可能的原因吗?(3)对于拟合优度你有什么看法吗?(4)检验是否每一个回归系数都与零显著不同(在1%水平下)。同时对零假设和备择假设、检验统计值、其分布和自由度以及拒绝零假设的标准进行陈述。你的结论是什么?解答:(1)为收入的边际储蓄倾向,表示人均收入每增加1美元时人均储蓄的预期平均变化量。(2)由于收入为零时

2、,家庭仍会有支出,可预期零收入时的平均储蓄为负,因此符号应为负。储蓄是收入的一部分,且会随着收入的增加而增加,因此预期的符号为正。实际的回归式中,的符号为正,与预期的一致。但截距项为负,与预期不符。这可能与由于模型的错误设定形造成的。如家庭的人口数可能影响家庭的储蓄形为,省略该变量将对截距项的估计产生影响;另一种可能就是线性设定可能不正确。(3)拟合优度刻画解释变量对被解释变量变化的解释能力。模型中53.8%的拟合优度,表明收入的变化可以解释储蓄中53.8%的变动。(4)检验单个参数采用t检验,零假设为参数为零,备择假设为参数

3、不为零。双变量情形下在零假设下t分布的自由度为n-2=36-2=34。由t分布表知,双侧1%下的临界值位于2.750与2.704之间。斜率项计算的t值为0.067/0.011=6.09,截距项计算的t值为384.105/151.105=2.54。可见斜率项计算的t值大于临界值,截距项小于临界值,因此拒绝斜率项为零的假设,但不拒绝截距项为零的假设。2-2.判断正误并说明理由:1)随机误差项ui和残差项ei是一回事2)总体回归函数给出了对应于每一个自变量的因变量的值3)线性回归模型意味着变量是线性的4)在线性回归模型中,解释变量是

4、原因,被解释变量是结果5)随机变量的条件均值与非条件均值是一回事答:错;错;错;错;错。2-3.试证明:(1),从而:(2)(3);即残差与的估计值之积的和为零。答:⑴根据定义得知,从而使得:证毕。⑵证毕。⑶证毕。2-4.下面数据是对X和Y的观察值得到的。∑Yi=1110;∑Xi=1680;∑XiYi=204200∑Xi2=315400;∑Yi2=133300假定满足所有的古典线性回归模型的假设,要求:(1)β1和β2?(2)β1和β2的标准差?(3)R2?(4)对β1、β2分别建立95%的置信区间?利用置信区间法,你可以接受

5、零假设:β2=0吗?解:⑴,⑵,,⑶,⑷,自由度为8,解得:的95%的置信区间。同理,,解得:为的95%的置信区间。由于不在的置信区间内,故拒绝零假设:。3.1以企业研发支出(R&D)占销售额的比重为被解释变量(Y),以企业销售额(X1)与利润占销售额的比重(X2)为解释变量,一个有32容量的样本企业的估计结果如下:其中括号中为系数估计值的标准差。(1)解释log(X1)的系数。如果X1增加10%,估计Y会变化多少个百分点?这在经济上是一个很大的影响吗?(2)针对R&D强度随销售额的增加而提高这一备择假设,检验它不虽X1而变化

6、的假设。分别在5%和10%的显著性水平上进行这个检验。(3)利润占销售额的比重X2对R&D强度Y是否在统计上有显著的影响?解答:(1)log(x1)的系数表明在其他条件不变时,log(x1)变化1个单位,Y变化的单位数,即DY=0.32Dlog(X1)»0.32(DX1/X1)=0.32´100%,换言之,当企业销售X1增长100%时,企业研发支出占销售额的比重Y会增加0.32个百分点。由此,如果X1增加10%,Y会增加0.032个百分点。这在经济上不是一个较大的影响。(2)针对备择假设H1:,检验原假设H0:。易知计算的t统

7、计量的值为t=0.32/0.22=1.468。在5%的显著性水平下,自由度为32-3=29的t分布的临界值为1.699(单侧),计算的t值小于该临界值,所以不拒绝原假设。意味着R&D强度不随销售额的增加而变化。在10%的显著性水平下,t分布的临界值为1.311,计算的t值小于该值,拒绝原假设,意味着R&D强度随销售额的增加而增加。(3)对X2,参数估计值的t统计值为0.05/0.46=1.087,它比在10%的显著性水平下的临界值还小,因此可以认为它对Y在统计上没有显著的影响。3-2.多元线性回归模型的基本假设是什么?试说明在

8、证明最小二乘估计量的无偏性和有效性的过程中,哪些基本假设起了作用?答:多元线性回归模型的基本假定有:零均值假定、随机项独立同方差假定、解释变量的非随机性假定、解释变量之间不存在线性相关关系假定、随机误差项服从均值为0方差为的正态分布假定。在证明最小二乘估计量的无偏性中,利用了

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。