新人教版七年级下册第六章实数全章教案

新人教版七年级下册第六章实数全章教案

ID:16071730

大小:714.50 KB

页数:16页

时间:2018-08-07

新人教版七年级下册第六章实数全章教案_第1页
新人教版七年级下册第六章实数全章教案_第2页
新人教版七年级下册第六章实数全章教案_第3页
新人教版七年级下册第六章实数全章教案_第4页
新人教版七年级下册第六章实数全章教案_第5页
资源描述:

《新人教版七年级下册第六章实数全章教案》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、第六章实数6.1.1平方根(第一课时)【教学目标】知识与技能:通过实际生活中的例子理解算术平方根的概念,会求非负数的算术平方根并会用符号表示;过程与方法:通过生活中的实例,总结出算术平方根的概念,通过计算非负数的算术平方根,真正掌握算术平方根的意义。情感态度与价值观:通过学习算术平方根,认识数与人类生活的密切联系,建立初步的数感和符号感,发展抽象思维,为学生以后学习无理数做好准备。教学重点:算术平方根的概念和求法。教学难点:算术平方根的求法。教具准备:三块大小相等的正方形纸片;学生计算器。教学方法:自主探究、启发引导

2、、小组合作【教学过程】一、情境引入:问题:学校要举行美术作品比赛,小欧很高兴,他想裁出一块面积为的正方形画布,画上自己得意的作品参加比赛,这块正方形画布的边长应取多少?二、探索归纳:1.探索:学生能根据已有的知识即正方形的面积公式:边长的平方等于面积,求出正方形画布的边长为。接下来教师可以再深入地引导此问题:如果正方形的面积分别是1、9、16、36、,那么正方形的边长分别是多少呢?学生会求出边长分别是1、3、4、6、,接下来教师可以引导性地提问:上面的问题它们有共同点吗?它们的本质是什么呢?这个问题学生可能总结不出来

3、,教师需加以引导。上面的问题,实际上是已知一个正数的平方,求这个正数的问题。第-16-页共16页2.归纳:⑴算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a那么这个正数x叫做a的算术平方根。⑵算术平方根的表示方法:a的算术平方根记为,读作“根号a”或“二次很号a”,a叫做被开方数。三、应用:例1、求下列各数的算术平方根:⑴⑵⑶⑷⑸解:⑴因为所以的算术平方根是,即;⑵因为,所以的算术平方根是,即;⑶因为,所以的算术平方根是,即;⑷因为,所以的算术平方根是,即;⑸因为,所以的算术平方根是,即。注:①根据算

4、术平方根的定义解题,明确平方与开平方互为逆运算;②求带分数的算术平方根,需要先把带分数化成假分数,然后根据定义去求解;③0的算术平方根是0。由此例题教师可以引导学生思考如下问题:你能求出-1,-36,-100的算术平方根吗?任意一个负数有算术平方根吗?归纳:一个正数的算术平方根有1个;0的算术平方根是0;负数没有算术平方根。即:只有非负数有算术平方根,如果有意义,那么。注:且这一点对于初学者不太容易理解,教师不要强求,可以在以后的教学中慢慢渗透。例2、求下列各式的值:(1)(2)(3)(4)分析:此题本质还是求几个非

5、负数的算术平方根。第-16-页共16页解:(1)(2)(3)(4)例2、求下列各数的算术平方根:⑴⑵⑶⑷解:(1)因为,所以;⑵因为,所以;⑶因为,所以;⑷因为,所以。根据学生的学习能力和理解能力可进行如下总结:1、由,,可得2、由,,可得教师需强调时对两种情况都成立。四、随堂练习:1、算术平方根等于本身的数有_____。2、求下列各式的值:,,,3、求下列各数的算术平方根:,,,,4、已知求的值。五、课堂小结1、这节课学习了什么呢?2、算术平方根的具体意义是怎么样的?3、怎样求一个正数的算术平方根?六、布置作业七、

6、教学反思第-16-页共16页6.1.2平方根(第2课时)【教学目标】知识与技能:会用计算器求算术平方根;了解无限不循环小数的特点;会用算术平方根的知识解决实际问题。过程与方法:通过折纸认识第一个无理数,并通过估计它的大小认识无限不循环小数的特点。用计算器计算算术平方根,使学生了解利用计算器可以求出任意一个正数的算术平方根,再通过一些特殊的例子找出一些数的算术平方根的规律,最后让学生感受算术平方根在实际生活中的应用。情感态度与价值观:通过探究的大小,培养学生的估算意识,了解两个方向无限逼近的数学思想,并且锻炼学生克服困

7、难的意志,建立自信心,提高学习热情。教学重点:①认识无限不循环小数的特点,会估算一些数的算术平方根。②会用算术平方根的知识解决实际问题。教学难点:认识无限不循环小数的特点,会估算一些数的算术平方根。教学方法:自主探究、启发引导、小组合作教学过程:一、通过实验引入:怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?如图,把两个小正方形沿对角线剪开,将所得的4个直角三角形拼在一起,就得到一个面积为2的大正方形。你知道这个大正方形的边长是多少吗?设大正方形的边长为,则,由算术平方根的意义可知,所以大正方形的边长为。第

8、-16-页共16页二、讨论的大小:由上面的实验我们认识了,它的大小是多少呢?它所表示的数有什么特征呢?下面我们讨论的大小。因为<<,所以<<.因为,,所以<<。因为,,所以<<因为,,所以<<如此进行下去,我们发现它的小数位数无限,且小数部分不循环,像这样的数我们成为无限不循环小数。=……注:这种估算体现了两个方向向中间无限逼近的数学思想,学生

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。