ku二分图最大权匹配(km算法)hn

ku二分图最大权匹配(km算法)hn

ID:16002254

大小:99.50 KB

页数:14页

时间:2018-08-07

ku二分图最大权匹配(km算法)hn_第1页
ku二分图最大权匹配(km算法)hn_第2页
ku二分图最大权匹配(km算法)hn_第3页
ku二分图最大权匹配(km算法)hn_第4页
ku二分图最大权匹配(km算法)hn_第5页
资源描述:

《ku二分图最大权匹配(km算法)hn》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、Kuhn-Munkres算法来自"NOCOW"跳转到:导航,搜索Maigo的KM算法讲解(的确精彩)KM算法是通过给每个顶点一个标号(叫做顶标)来把求最大权匹配的问题转化为求完备匹配的问题的。设顶点Xi的顶标为A[i],顶点Yi的顶标为B[i],顶点Xi与Yj之间的边权为w[i,j]。在算法执行过程中的任一时刻,对于任一条边(i,j),A[i]+B[j]>=w[i,j]始终成立。KM算法的正确性基于以下定理:  *若由二分图中所有满足A[i]+B[j]=w[i,j]的边(i,j)构成的子图(称做相等子图)有完备匹配,那么这个完备匹配就是二分图的最大权匹配。  这个定理是显然的。

2、因为对于二分图的任意一个匹配,如果它包含于相等子图,那么它的边权和等于所有顶点的顶标和;如果它有的边不包含于相等子图,那么它的边权和小于所有顶点的顶标和。所以相等子图的完备匹配一定是二分图的最大权匹配。  初始时为了使A[i]+B[j]>=w[i,j]恒成立,令A[i]为所有与顶点Xi关联的边的最大权,B[j]=0。如果当前的相等子图没有完备匹配,就按下面的方法修改顶标以使扩大相等子图,直到相等子图具有完备匹配为止。  我们求当前相等子图的完备匹配失败了,是因为对于某个X顶点,我们找不到一条从它出发的交错路。这时我们获得了一棵交错树,它的叶子结点全部是X顶点。现在我们把交错树中

3、X顶点的顶标全都减小某个值d,Y顶点的顶标全都增加同一个值d,那么我们会发现:两端都在交错树中的边(i,j),A[i]+B[j]的值没有变化。也就是说,它原来属于相等子图,现在仍属于相等子图。两端都不在交错树中的边(i,j),A[i]和B[j]都没有变化。也就是说,它原来属于(或不属于)相等子图,现在仍属于(或不属于)相等子图。X端不在交错树中,Y端在交错树中的边(i,j),它的A[i]+B[j]的值有所增大。它原来不属于相等子图,现在仍不属于相等子图。X端在交错树中,Y端不在交错树中的边(i,j),它的A[i]+B[j]的值有所减小。也就说,它原来不属于相等子图,现在可能进入

4、了相等子图,因而使相等子图得到了扩大。  现在的问题就是求d值了。为了使A[i]+B[j]>=w[i,j]始终成立,且至少有一条边进入相等子图,d应该等于min{A[i]+B[j]-w[i,j]

5、Xi在交错树中,Yi不在交错树中}。  以上就是KM算法的基本思路。但是朴素的实现方法,时间复杂度为O(n4)——需要找O(n)次增广路,每次增广最多需要修改O(n)次顶标,每次修改顶标时由于要枚举边来求d值,复杂度为O(n2)。实际上KM算法的复杂度是可以做到O(n3)的。我们给每个Y顶点一个“松弛量”函数slack,每次开始找增广路时初始化为无穷大。在寻找增广路的过程中,检查边(i

6、,j)时,如果它不在相等子图中,则让slack[j]变成原值与A[i]+B[j]-w[i,j]的较小值。这样,在修改顶标时,取所有不在交错树中的Y顶点的slack值中的最小值作为d值即可。但还要注意一点:修改顶标后,要把所有的slack值都减去d。二分图最大权完美匹配KM算法  好吧,这弄点正经的。这次就写写大家肯定很久以前就搞出来的KM。我写这个是因为前几天整理模板的时候居然发现我的KM还是O(n^4)的,虽然实际运行效果大部分和O(n^3)差不多,但是理论的上界仍然让我不爽,就像networksimplexalgorithm一样。  先说一下KM的适用范围。据我分析KM实际

7、上可以对任意带权(无论正负权)二分图求最大/最小权完美匹配,唯一的一个,也是最重要的一个要求就是这个匹配必须是完美匹配,否则KM的正确性将无法得到保证。这个当了解了KM的正确性证明之后自然就会知道。非完美的匹配的似乎必须祭出mincostmaxflow了。  然后就是KM的时间界。这里略去KM的步骤不谈。众所周知,KM弄不好就会写出O(n^4)的算法,而实际上是存在O(n^3)的实现的。那么O(n^4)究竟是慢在什么地方呢?这个就需要搞清楚O(n^4)的4究竟是怎么来的。  每个点都需要作一次增广,所以有一个n的循环。每个循环内部,每次可能无法得到一条增广路,需要新加入一个y顶

8、点,然后重新寻找增广路。一次最少加进1个点,所以最多加入n次。每次重新找一遍增广路n^2,更新距离标号需要扫描每一条边n^2,所以迭加起来O(n)*O(n)*O(n^2),结果自然就是O(n^4)。  第一层和第二层循环似乎没有很好的方法可以把它搞掉,所以我们只能从第三层,也就是每次的O(n^2)入手。这一层包括两个部分,一个是增广路的n^2,一个是更新标号的n^2,需要将二者同时搞掉才能降低总共的复杂度。注意更新标号之后有一个最重要的性质,那就是原来存在的合法边仍然合法,更新只是将不合法的

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。