2018届高三上学期数学一轮复习教案:第9讲 导数

2018届高三上学期数学一轮复习教案:第9讲 导数

ID:15949980

大小:712.00 KB

页数:14页

时间:2018-08-06

2018届高三上学期数学一轮复习教案:第9讲 导数_第1页
2018届高三上学期数学一轮复习教案:第9讲 导数_第2页
2018届高三上学期数学一轮复习教案:第9讲 导数_第3页
2018届高三上学期数学一轮复习教案:第9讲 导数_第4页
2018届高三上学期数学一轮复习教案:第9讲 导数_第5页
资源描述:

《2018届高三上学期数学一轮复习教案:第9讲 导数》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2017-2018学年高三数学上学期一轮复习教案2017-2018学年第一学期高三年级数学学科集体备课教案课题导数(共6课时)修改与创新教学目标1.导数及其应用(1)导数概念及其几何意义①通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵;②通过函数图像直观地理解导数的几何意义。(2)导数的运算①能根据导数定义求函数y=c,y=x,y=x2,y=x3,y=1/x,y=x的导数;②能利用给出的基本初等函数的导数公式和导数的四则运

2、算法则求简单函数的导数,能求简单的复合函数(仅限于形如f(ax+b))的导数;③会使用导数公式表。(3)导数在研究函数中的应用①结合实例,借助几何直观探索并了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间;②结合函数的图像,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三次的多项式函数的极大值、极小值,以及闭区间上不超过三次的多项式函数最大值、最小值;体会导数方法在研究函数性质中的一般性和有效性。(4)生活中的优化问题举例例如,使利润最大、用料最省

3、、效率最高等优化问题,体会导数在解决实际问题中的作用。导数知识是高考重点之一。需细致全面复习。命题走向导数是高中数学中重要的内容,是解决实际问题的强有力的数学工具,运用导数的有关知识,研究函数的性质:单调性、极值和最值是高考的热点问题。在高考中考察形式多种多样,以选择题、填空题等主观题目的形式考察基本概念、运算及导数的应用,也经常以解答题形式和其它数学知识结合起来,综合考察利用导数研究函数的单调性、极值、最值,估计2017年高考继续以上面的几种形式考察不会有大的变化:142017-2018学年高三数学上学期

4、一轮复习教案(1)考查形式为:选择题、填空题、解答题各种题型都会考察,选择题、填空题一般难度不大,属于高考题中的中低档题,解答题有一定难度,一般与函数及解析几何结合,属于高考的中低档题;(2)2017年高考可能涉及导数综合题,以导数为数学工具考察:导数的物理意义及几何意义,复合函数、数列、不等式等知识。教学准备多媒体课件教学过程一.知识梳理:1.导数的概念函数y=f(x),如果自变量x在x处有增量,那么函数y相应地有增量=f(x+)-f(x),比值叫做函数y=f(x)在x到x+之间的平均变化率,即=。如果当

5、时,有极限,我们就说函数y=f(x)在点x处可导,并把这个极限叫做f(x)在点x处的导数,记作f’(x)或y’

6、。即f(x)==。说明:(1)函数f(x)在点x处可导,是指时,有极限。如果不存在极限,就说函数在点x处不可导,或说无导数。(2)是自变量x在x处的改变量,时,而是函数值的改变量,可以是零。由导数的定义可知,求函数y=f(x)在点x处的导数的步骤(可由学生来归纳):(1)求函数的增量=f(x+)-f(x);(2)求平均变化率=;利用导数的几何意义求直线方程是高频考题,需让学生理解、把握。14201

7、7-2018学年高三数学上学期一轮复习教案(3)取极限,得导数f’(x)=。2.导数的几何意义函数y=f(x)在点x处的导数的几何意义是曲线y=f(x)在点p(x,f(x))  处的切线的斜率。也就是说,曲线y=f(x)在点p(x,f(x))处的切线的斜率是f’(x)。相应地,切线方程为y-y=f/(x)(x-x)。3.常见函数的导出公式. (1)(C为常数)    (2) (3)       (4)4.两个函数的和、差、积的求导法则法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差),即:

8、(法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数,即:若C为常数,则.即常数与函数的积的导数等于常数乘以函数的导数:法则3两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方:‘=(v0)。5.导数的应用(1)一般地,设函数在某个区间可导,如果,则为增函数;如果,则为减函数;如果在某区间内恒有,则为常数;(2)曲线在极值点处切线的斜率为0,极值点处的导数为0;曲线在极大值点左侧切线的斜率为正,右侧为负;曲线在极小值点左侧

9、切线的斜率为负,右侧为正;(3)一般地,在区间上连续的函数f在上必有最大值与最小值。①求函数ƒ在(a,b)内的极值;②求函数ƒ在区间端点的值ƒ(a)、ƒ(b);③将函数ƒ142017-2018学年高三数学上学期一轮复习教案的各极值与ƒ(a)、ƒ(b)比较,其中最大的是最大值,其中最小的是最小值。二.典例分析考点一:导数的概念例1.已知s=,(1)计算t从3秒到3.1秒、3.001秒、3.0001秒….各段内平均速

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。