欢迎来到天天文库
浏览记录
ID:15937053
大小:114.00 KB
页数:18页
时间:2018-08-06
《容斥原理与抽屉原理》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、抽屉原理常见形式第一抽屉原理原理1:把多于n+1个的物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件。抽屉原理证明(反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n,而不是题设的n+k(k≥1),故不可能。 原理2:把多于mn(m乘以n)个的物体放到n个抽屉里,则至少有一个抽屉里有不少于m+1的物体。 证明(反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn个物体,与题设不符,故不可能。 原理3:把无穷多件物体放入n个抽屉,则至少有一个抽屉里有无穷个物体。 原理1、2、3都是第一抽屉原
2、理的表述。第二抽屉原理 把(mn-1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体。 证明(反证法):若每个抽屉都有不少于m个物体,则总共至少有mn个物体,与题设矛盾,故不可能。基本介绍 应用抽屉原理解题 抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用。许多有关存在性的证明都可用它来解决。 例1:同年出生的400人中至少有2个人的生日相同。 解:将一年中的365天视为365个抽屉,400个人看作400个物体,由抽屉原理1可以得知:至少有2人的生日相同.400/365=1…35,1+1=
3、2 又如:我们从街上随便找来13人,就可断定他们中至少有两个人属相相同。 “从任意5双手套中任取6只,其中至少有2只恰为一双手套。” “从数1,2,...,10中任取6个数,其中至少有2个数为奇偶性不同。” 例2:幼儿园买来了不少白兔、熊猫、长颈鹿塑料玩具,每个小朋友任意选择两件,那么不管怎样挑选,在任意七个小朋友中总有两个彼此选的玩具都相同,试说明道理. 解:从三种玩具中挑选两件,搭配方式只能是下面六种:(兔、兔),(兔、熊猫),(兔、长颈鹿),(熊猫、熊猫),(熊猫、长颈鹿),(长颈鹿、长颈鹿)。把每种搭配方式看作一
4、个抽屉,把7个小朋友看作物体,那么根据原理1,至少有两个物体要放进同一个抽屉里,也就是说,至少两人挑选玩具采用同一搭配方式,选的玩具相同. 上面数例论证的似乎都是“存在”、“总有”、“至少有”的问题,不错,这正是抽屉原则的主要作用.(需要说明的是,运用抽屉原则只是肯定了“存在”、“总有”、“至少有”,却不能确切地指出哪个抽屉里存在多少. 抽屉原理虽然简单,但应用却很广泛,它可以解答很多有趣的问题,其中有些问题还具有相当的难度。下面我们来研究有关的一些问题。 制造抽屉是运用原则的一大关键 例1从2、4、6、…、30这15个
5、偶数中,任取9个数,证明其中一定有两个数之和是34。 分析与解答我们用题目中的15个偶数制造8个抽屉: 此抽屉特点:凡是抽屉中有两个数的,都具有一个共同的特点:这两个数的和是34。现从题目中的15个偶数中任取9个数,由抽屉原理(因为抽屉只有8个),必有两个数可以在同一个抽屉中(符合上述特点).由制造的抽屉的特点,这两个数的和是34。 例2:从1、2、3、4、…、19、20这20个自然数中,至少任选几个数,就可以保证其中一定包括两个数,它们的差是12。 分析与解答在这20个自然数中,差是12的有以下8对:{20,8},{1
6、9,7},{18,6},{17,5},{16,4},{15,3},{14,2},{13,1}。 另外还有4个不能配对的数{9},{10},{11},{12},共制成12个抽屉(每个括号看成一个抽屉).只要有两个数取自同一个抽屉,那么它们的差就等于12,根据抽屉原理至少任选13个数,即可办到(取12个数:从12个抽屉中各取一个数(例如取1,2,3,…,12),那么这12个数中任意两个数的差必不等于12)。 例3:从1到20这20个数中,任取11个数,必有两个数,其中一个数是另一个数的倍数。 分析与解答根据题目所要求证的问题,
7、应考虑按照同一抽屉中,任意两数都具有倍数关系的原则制造抽屉.把这20个数按奇数及其倍数分成以下十组,看成10个抽屉(显然,它们具有上述性质): {1,2,4,8,16},{3,6,12},{5,10,20},{7,14},{9,18},{11},{13},{15},{17},{19}。 从这10个数组的20个数中任取11个数,根据抽屉原理,至少有两个数取自同一个抽屉.由于凡在同一抽屉中的两个数都具有倍数关系,所以这两个数中,其中一个数一定是另一个数的倍数。 例4:某校校庆,来了n位校友,彼此认识的握手问候.请你证明无论什么
8、情况,在这n个校友中至少有两人握手的次数一样多。 分析与解答共有n位校友,每个人握手的次数最少是0次,即这个人与其他校友都没有握过手;最多有n-1次,即这个人与每位到会校友都握了手.然而,如果有一个校友握手的次数是0次,那么握手次数最多的不能多于n-2次;如果
此文档下载收益归作者所有