[理学]离散数学第四版 课后答案

[理学]离散数学第四版 课后答案

ID:15903415

大小:506.50 KB

页数:106页

时间:2018-08-06

[理学]离散数学第四版 课后答案_第1页
[理学]离散数学第四版 课后答案_第2页
[理学]离散数学第四版 课后答案_第3页
[理学]离散数学第四版 课后答案_第4页
[理学]离散数学第四版 课后答案_第5页
资源描述:

《[理学]离散数学第四版 课后答案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、离散数学第四版课后答案第1章习题解答1.1除(3),(4),(5),(11)外全是命题,其中,(1),(2),(8),(9),(10),(14),(15)是简单命题,(6),(7),(12),(13)是复合命题。分析首先应注意到,命题是陈述句,因而不是陈述句的句子都不是命题。本题中,(3)为疑问句,(5)为感叹句,(11)为祈使句,它们都不是陈述句,所以它们都不是命题。其次,4)这个句子是陈述句,但它表示的判断结果是不确定。又因为(1),(2),(8),(9),(10),(14),(15)都是简单的陈述句,因而作为命题,它们都是简单命题。(6)和(7)各为由联结词“当且仅当”联结起来的复合命

2、题,(12)是由联结词“或”联结的复合命题,而(13)是由联结词“且”联结起来的复合命题。这里的“且”为“合取”联结词。在日常生活中,合取联结词有许多表述法,例如,“虽然……,但是……”、“不仅……,而且……”、“一面……,一面……”、“……和……”、“……与……”等。但要注意,有时“和”或“与”联结的是主语,构成简单命题。例如,(14)、(15)中的“与”与“和”是联结的主语,这两个命题均为简单命题,而不是复合命题,希望读者在遇到“和”或“与”出现的命题时,要根据命题所陈述的含义加以区分。1.2(1)p:2是无理数,p为真命题。(2)p:5能被2整除,p为假命题。(6)p→q。其中,p:2

3、是素数,q:三角形有三条边。由于p与q都是真命题,因而p→q为假命题。(7)p→q,其中,p:雪是黑色的,q:太阳从东方升起。由于p为假命题,q为真命题,因而p→q为假命题。(8)p:2000年10月1日天气晴好,今日(1999年2月13日)我们还不知道p的真假,但p的真值是确定的(客观存在的),只是现在不知道而已。(9)p:太阳系外的星球上的生物。它的真值情况而定,是确定的。1(10)p:小李在宿舍里.p的真值则具体情况而定,是确定的。(12)p∨q,其中,p:4是偶数,q:4是奇数。由于q是假命题,所以,q为假命题,p∨q为真命题。(13)p∨q,其中,p:4是偶数,q:4是奇数,由于q

4、是假命题,所以,p∨q为假命题。(14)p:李明与王华是同学,真值由具体情况而定(是确定的)。(15)p:蓝色和黄色可以调配成绿色。这是真命题。分析命题的真值是唯一确定的,有些命题的真值我们立即可知,有些则不能马上知道,但它们的真值不会变化,是客观存在的。1.3令p:2+2=4,q:3+3=6,则以下命题分别符号化为(1)p→q(2)p→¬q(3)¬p→q(4)¬p→¬q(5)p↔q(6)p↔¬q(7)¬p→q(8)¬p↔¬q以上命题中,(1),(3),(4),(5),(8)为真命题,其余均为假命题。分析本题要求读者记住p→q及p↔q的真值情况。p→q为假当且仅当p为真,q为假,而p↔q为真

5、当且仅当p与q真值相同.由于p与q都是真命题,在4个蕴含式中,只有(2)p→r,其中,p同(1),r:明天为3号。在这里,当p为真时,r一定为假,p→r为假,当p为假时,无论r为真还是为假,p→r为真。21.5(1)p∧q,其中,p:2是偶数,q:2是素数。此命题为真命题。(2)p∧q,其中,p:小王聪明,q:小王用功(3)p∧q,其中,p:天气冷,q:老王来了(4)p∧q,其中,p:他吃饭,q:他看电视(5)p∧q,其中,p:天下大雨,q:他乘公共汽车上班(6)p→q,其中,p,q的含义同(5)(7)p→q,其中,p,q的含义同(5)(8)¬p↔¬q,其中,p:经一事,q:长一智分析1°在

6、前4个复合命题中,都使用了合取联结词,都符号化为合取式,这正说明合取联结词在使用时是很灵活的。在符号化时,应该注意,不要将联结词部分放入简单命题中。例如,在(2)中,不能这样写简单命题:p:小王不但聪明,q:小王而且用功。在(4)中不能这样写:p:他一边吃饭,q:他一边看电视。2°后4个复合命题中,都使用了蕴含联结词,符号化为蕴含式,在这里,关键问题是要分清蕴含式的前件和后件。p→q所表达的基本逻辑关系为,p是q的充公条件,或者说q是p的必要条件,这种逻辑关系在叙述上也是很灵活的。例如,“因为p,所以q”,“只要p,就q”“p仅当q”“只有q才p”“除非q,否则¬p”“没有q,就没有p”等都

7、表达了q是p的必要条件,因而都符号化为p→q或¬p↔¬q的蕴含式。在(5)中,q是p的必要条件,因而符号化为p→q,而在(6)(7)中,p成了q的必要条件,因而符号化为q→p。在(8)中,虽然没有出现联结词,但因两个命题的因果关系可知,应该符号化为蕴含式。1.6(1),(2)的真值为0,(3),(4)的真值为1。分析1°(1)中公式含3个命题变项,因而它应该有23=8个赋值:000,3001,…,111题中指

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。