拉氏变换、传递函数、数学模型

拉氏变换、传递函数、数学模型

ID:15784059

大小:1.31 MB

页数:37页

时间:2018-08-05

拉氏变换、传递函数、数学模型_第1页
拉氏变换、传递函数、数学模型_第2页
拉氏变换、传递函数、数学模型_第3页
拉氏变换、传递函数、数学模型_第4页
拉氏变换、传递函数、数学模型_第5页
资源描述:

《拉氏变换、传递函数、数学模型》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、拉普拉斯变换的数学方法一、拉氏变换与拉氏及变换的定义1、拉氏变换:设有时间函数,其中,则f(t)的拉氏变换记作:称L—拉氏变换符号;s-复变量;F(s)—为f(t)的拉氏变换函数,称为象函数。f(t)—原函数拉氏变换存在,f(t)必须满足两个条件(狄里赫利条件):1)在任何一有限区间内,f(t)分断连续,只有有限个间断点。2)当时,,M,a为实常数。2、拉氏反变换:将象函数F(s)变换成与之相对应的原函数f(t)的过程。—拉氏反变换符号关于拉氏及变换的计算方法,常用的有:①查拉氏变换表;②部分分式展开法。二、典型时间函数的拉氏变换在实际中,对系

2、统进行分析所需的输入信号常可化简成一个成几个简单的信号,这些信号可用一些典型时间函数来表示,本节要介绍一些典型函数的拉氏变换。1.单位阶跃函数2.单位脉冲函数3.单位斜坡函数4.指数函数5.正弦函数sinwt由欧拉公式:所以,6.余弦函数coswt其它的可见表2-1:拉氏变换对照表F(s)f(t)11(t)t三、拉氏变换的性质1、线性性质若有常数k1,k2,函数f1(t),f2(t),且f1(t),f2(t)的拉氏变换为F1(s),F2(s),则有:,此式可由定义证明。2、位移定理(1)实数域的位移定理若f(t)的拉氏变换为F(s),则对任一正

3、实数a有,其中,当t<0时,f(t)=0,f(t-a)表f(t)延迟时间a.证明:,令t-a=τ,则有上式=例:,求其拉氏变换(2)复数域的位移定理若f(t)的拉氏变换为F(s),对于任一常数a,有证:例:求的拉氏变换3、微分定理设f(t)的拉氏变换为F(s),则其中f(0+)由正向使的f(t)值。证:同理可推广到n阶:当初始条件为0时,即则有4、积分定理设f(t)的拉氏变换为F(s),则,其中时的值。证明:同理可得n阶积分的拉氏变换:当初始条件为0时,f(t)的各重积分在时,均为0,则有]5、初值定理设f(t)的拉氏变换为F(s),则函数f(

4、t)的初值定理表示为:证明:由微分定理知:对等式两边取极限:则有例:已知,求f(0+)由初值定理知:6、终值定理:若f(t)的拉氏变换为F(s),则终值定理表示为:证明:由微分定理知:令,对上式两边取极限,这个定理在稳态误差中常用。例:已知:,求f()7、卷积定理设f(t)的拉氏变换为F(s),g(t)的拉氏变换为G(s),则有式中,称为f(t)与g(t)的卷积。此定理不要求证明。课堂练习:1)求L[t2]2)求图示正弦波半波函数的拉氏变换3)已知f(t)的拉氏变换为F(s),求4)已知f(t)的拉氏变换为F(s),求L[f(at)]四、拉氏反

5、变换的数学方法在已知象函数F(s),求f(t)时,对于简单的象函数,可直接利用表2-1来查,但对于复杂的,可利用部分分式展开法,即通过代数运算将一个复杂的象函数化为数个简单的部分分式之和,再求出各个分式的原函数,从而求出总的原函数。部分分式展开法:对于象函数F(s),常可写成如下形式:式中,p1,p2…,pn称为F(s)的极点,p1,p2…,pn称为F(s)的零点。一般A(s)的阶次大于B(s),若B(s)>A(s),可化为多项式+真分式的形式。下面分两种情况,研究分式展开法。1、F(s)无重极点的情况此时,F(s)总能展开成下面的部分分式之和

6、:其中,分子为待定系数。例:求F(s)的拉氏变换解一:解二:所以例2若p1,p2为共轭复数,相应的系数k1,k2也是共轭复数,故只需求出一个即可。2、F(s)有重极点的情况设F(s)有r个重极点p1,其余极点均不相同,则例:求的拉氏反变换所以:2-2系统的数学模型一、概述为了分析、研究系统的动态特性,一般情况下,首先要建立系统的数学模型。1、数学模型的概念我们把描述系统或元件的动态特性的数学表达式叫做系统或元件的数学模型。深入了解元件及系统的动态特性,准确建立它们的数学模型-称建模,只有得到较为准确的数学建模,才能设计出性能良好的控制系统。动态

7、特性控制系统所采用的元件种类繁多,虽然各自服从的规律,但它们有一共同点:即任何系统或元件总有物质或能量流入,同时又有某些物质或能量流出,系统通常又是有贮存物质或能量的能力,贮存量的多少用状态变量来表示。状态变量是反应系统流入量或流出量之间平衡的物理量,由于外部供给系统的物质或能量的速率是有限的,不可能是无穷大,因此,系统的状态变量有一个状态变到另一个状态不可能瞬间完成,而要经过一段时间。这样,状态变量的变化就有一个过程,这就是动态过程。例如,电路中电容上的电压是一个状态变量,它由一个值变到另一个值不可能瞬间完成。具有一定惯量的物体的转速是一个状

8、态变量,转速的变化也是一个过渡过程,具有一定质量的物体的温度是一个状态变量,它由温度T0变到T,同样有一个动态过程;又如容器中液位也是一个状态变量,液

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。