欢迎来到天天文库
浏览记录
ID:15769793
大小:376.05 KB
页数:7页
时间:2018-08-05
《卫星编队飞行的神经网络滑模控制》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、万方数据第27卷第6期2009年11月应用科学学报JOURNALOFAPPLIEDSCIENCES——ElectronicsandInformationEngineeringVm.27No.6NOV.2009文章编号:0255-8297(2009)06-0651—06NeuralNetwork·-BasedSlidingModeControlforSatelliteFormationFlyingGAOYou-ta01,LUYu—pin91,一,XUB021.CollegeofAutomationEngineering,Na
2、nfingUniversityo
3、AeronauticsandAstronautics.N删tng210016,China2.Collegeo{Astronautics,N喇tngUniversityolAeronauticsandAstronautics.Nanjing210016,ChinaAbstract:Thegeneraldynamicalmodelofsatelliteformationflyingisderived.Aslidingmodecontrolmethodbasedonneuralnetworksi
4、sproposedtoimprovecontrolaccuracyandrobustnessofsatelliteformationflying.Aneuralnetworkbasedonradialbasisfunctionisdesignedtomodifytheparametersofexponentreachinglawinordertogetanoptimalbalancebetweenconvergencespeedoftheslidingquantityandfuelconsumption.Exponentr
5、eachinglawwithsaturationfunctionisusedtoweakenchatteringactuatedbyun—modeleddynamicsandhighkequencyswitchingcontr01.Thesecondorderslidingquantityoftherelativepositionerrorisusedtoimprovethecontrolaccuracy.Simulationresultsshowefrectivenessoftheneuralnetwork-baseds
6、lidingmodecontrolmethod.Keywords:satelliteformationflying,slidingmodecontrol,neuralnetwork,chattering,robustnessCLCnumber:V412.4DocumentCOde:A卫星编队飞行的神经网络滑模控制高有涛1,陆宇平1,一,徐波21.南京航空航天大学自动化学院,南京2100162.南京航空航天大学航天学院,南京210016摘要:该文推导卫星编队飞行的一般相对运动动力学模型,研究将指数趋近律滑模控制与神经网络控制
7、相结合的卫星编队飞行控制方法,设计一种径向基神经网络参数调节器.实时调节指数趋近律的参数,从而取得滑动面的趋近速度和燃料消耗的最优平衡.采用指数趋近律滑模控制法,用饱和函数代替可能产生高频切换信号的开关函数,有效地削弱了滑模控制的抖动.二阶滑模控制结构保证了卫星编队的高精度控制.仿真结果表明了这一控制方法的有效性.关键词:卫星编队飞行;滑模控制;神经网络;抖振;鲁棒性Satelliteformationflying(SFF)whichbreaksthe1imitationandextendsthescopeofapplic
8、ationsofthetraditionallargesatelliteisanactiveresearcharea.SFFhasrapidlydevelopedintotheareasofspace-basedtadar.ground—basedterrestriallasercommunicationsys.tem,earthsurveillance,remotesensing,stellarimagingandastrometry.TheCOntrolsystemofSFFisrequiredtostabilizet
9、heformationinthepresenceofdisturbanceandini.tialconditionerrors.Controlalgorithmsarealsoneces-saryforestablishingandrecordiguringformations.TheLQcontrol
此文档下载收益归作者所有