§42量子力学的矩阵表示

§42量子力学的矩阵表示

ID:15697490

大小:432.50 KB

页数:21页

时间:2018-08-04

§42量子力学的矩阵表示_第1页
§42量子力学的矩阵表示_第2页
§42量子力学的矩阵表示_第3页
§42量子力学的矩阵表示_第4页
§42量子力学的矩阵表示_第5页
资源描述:

《§42量子力学的矩阵表示》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、21§4.2量子力学的矩阵表示§4.2量子力学的矩阵表示一、态的表示二、算符的表示三、量子力学公式的矩阵表示用力学量完全集的正交、归一和完备的本征态矢量的集合作基底的表象,称为表象。为书写简便,用代表,用代表,用代表本征值谱.把表象简称为表象。以分立谱为例本征方程:基底:正交归一化:封闭关系:一、态的表示21§4.2量子力学的矩阵表示态在表象上的表示为一个列矩阵矩阵元代表态在基底上的投影,或称为展开系数。它可在坐标表象上计算态和的内积可以通过列矩阵相乘得到其中,.这是因为21§4.2量子力学的矩阵表示若,则称态和正交。而则

2、是指态是归一化的。基底在自身表象上的表示为¬第行基底的正交归一化写成.态向基底的展开写成21§4.2量子力学的矩阵表示展开系数.对于连续谱情况本征方程:基底:正交归格化:封闭关系:态在表象上的表示矩阵成为本征值的函数态和的内积为因为21§4.2量子力学的矩阵表示归一化条件为.而基底在自身表象上表示为.二、算符的表示1.算符用矩阵表示算符是通过对态的作用定义的。因为态用列矩阵表示,所以算符应该用矩阵表示。21§4.2量子力学的矩阵表示矩阵是算符在表象上的表示矩阵元为可以在坐标表象上计算。下面会看到,在坐标表象上矩阵元的计算公

3、式为式中.【例】用包括Hamilton量在内的力学量完全集的共同本征态的集合作基底的表象,称为能量表象。在一维谐振子的能量表象上,计算坐标,动量和本身的表示矩阵。21§4.2量子力学的矩阵表示利用矩阵元公式得坐标,动量和的表示矩阵21§4.2量子力学的矩阵表示2.在自身表象上力学量算符的表示在自身表象上力学量算符的表示是一个对角矩阵,而对角元素就是这个力学量的本征值。21§4.2量子力学的矩阵表示因此,求解力学量的本征值问题,可以通过选择合适的基底,使这一力学量算符的表示矩阵成为对角矩阵。对角元素就是待求的本征值,而所用的

4、基底就是待求的本征态。3.Hermite共轭矩阵和Hermite矩阵(1)Hermite共轭矩阵矩阵的Hermite共轭矩阵定义为:将转置且矩阵元取复共轭.例如,.若算符的表示矩阵为,则Hermite共轭算符的表示矩阵必为的Hermite共轭矩阵.证明:即«,«.(2)Hermite矩阵若,则称为Hermite矩阵。21§4.2量子力学的矩阵表示若为Hermite矩阵,则Hermite矩阵的非对角元是关于主对角线复共轭反射对称的,对角元为实数。(对角元)例如,的Hermite矩阵一定取下面形式其中和为实数。Hermite算

5、符的表示矩阵必为Hermite矩阵。4.算符在坐标和动量表象上的表示(1)在坐标表象上的表示21§4.2量子力学的矩阵表示例如Hamilton量表示为注意,式中的函数代表“矩阵”是对角的,只在积分运算中起作用。上述动量的表示可作如下理解将上式中的被积函数写成则原式为21§4.2量子力学的矩阵表示即为什么被积函数不写成的形式呢?这完全是为了符合基本假定.为导出算符在坐标表象上的表示,首先把按和作展开。如果二元函数在附近可作展开则算符可展开为21§4.2量子力学的矩阵表示然后计算矩阵元,即可得到.【例】证明坐标表象上矩阵元的计

6、算公式为其中.证明:21§4.2量子力学的矩阵表示【例】证明证明:要证明的第二式是第一式的复数共轭。(2)动量表象例如在动量表象上Hamilton量表示为21§4.2量子力学的矩阵表示.【例】一维谐振子能量本征方程的动量表象形式为.证明:其中代入后积分,即证。【例】设质量为的粒子处于势场中,为非零常数。求与能量对应的本征波函数。解.显然无束缚态解。本征方程坐标表象形式为而动量表象形式为21§4.2量子力学的矩阵表示比坐标表象形式容易求解。通过Fourie变换可得本征态的坐标表象表示.【思考】证明三、量子力学公式的矩阵表示下

7、面列出量子力学重要公式在表象上的矩阵形式。1.薛定谔方程的矩阵形式21§4.2量子力学的矩阵表示其中,,证明:,2.力学量平均值公式的矩阵形式,证明:21§4.2量子力学的矩阵表示【例】在自身表象上,写出力学量在态上的平均值。解.3.本征方程的矩阵形式21§4.2量子力学的矩阵表示有非零解的条件称为“久期方程”这是一个次幂代数方程,为表象空间的维数。求解久期方程可得个实根,构成本征值谱把代回本征方程可得相应本征态,若有重根,则出现简并。【例】已知在正交归一化基底所张开的三维空间中,体系能量算符的表示矩阵为21§4.2量

8、子力学的矩阵表示求能量的本征值和本征态。解.在以为基底的表象上,的本征方程为久期方程为解得能量本征值,和,分别代入本征方程并利用归一化条件可得到相应本征波函数,,21§4.2量子力学的矩阵表示,,,,

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。