资源描述:
《铁粉基软磁材料介绍》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、铁粉基软磁材料介绍1 材料种类 海绵铁从1910年开始生产,但直到1946年瑞典赫格纳斯公司才建立起世界第一家铁粉厂,现在铁粉生产已成为一种工业。60年代建立起雾化制粉工艺,整个铁粉工业年产铁粉逾80万t。这种材料大部分用于粉末冶金工业,按严格技术要求生产终形制品。高纯度与高压缩性铁粉的开发,为粉末冶金制品开辟了软磁应用领域。 采用粉末冶金技术,压制铁粉并在高温下烧结,可得到相当于纯铁铸件的软磁部件。不损害压缩性的合金化方法的开发,提供了大量的合金化材料。合金添加剂提高电阻率,导致较低的涡流损耗。合金化材料在高温下烧
2、结也可得到高磁导率。可是,合金添加剂也降低饱和磁感,而且合金含量在商业使用上还有一个限度。一般认为,这些材料适合于直流电应用,或很低频率的应用。 减少铁颗粒涡流损耗的另一种方法是在颗粒之间引入绝缘层。绝缘层可以是有机树脂材料或无机材料,因而这些材料是软磁复合材料。绝缘层可以有效地降低涡流损耗,但绝缘层的作用像气隙一样,因而也降低了磁导率。通常用降低绝缘层厚度、压制到高密度和进行热处理消除或减少应力来部分地恢复磁导率。性能的变化取决于所使用的频率。因而最近几年迅速发展了一系列材料与工艺。 软磁复合材料的最新开发,旨在生
3、产可在较低频率下使用的部件。像电机一类通常是在50-60Hz频率下工作,但微型化趋势可能将频率增加到100Hz或300Hz。将低频应用的烧结软磁材料与50Hz应用的软磁复合材料对比一下是有趣的。这种对比是在50Hz与05T条件下进行的,因为在较高磁感下的涡流损耗比例相当大,对于烧结材料性能的测定是困难的。 高电阻率的烧结材料在50Hz下的总损耗接近于软磁复合材料的总损耗。而烧结材料的总损耗中涡流损耗占有很高比例,而软磁复合材料的总损耗几乎全是磁滞损耗。 对比软磁复合材料的直流磁滞曲线与50Hz时的磁滞曲线,这些曲线实
4、际上是相同的,因而证实总损耗几乎全是磁滞损耗。一种高电阻率材料(含3%Si的烧结铁)在直流和在005Hz、05Hz和50Hz交流时的磁滞曲线的面积随频率的增加而增加,证实存在着涡流损耗。 低频到中频应用的传统材料是叠层钢片。堆叠钢片或堆叠前将钢片表面绝缘,可降低堆叠方向上的涡流。平行于钢片方向上显示出金属合金的高磁导率和损耗值。在低到中频使用的粉末材料几乎都是雾化铁粉。烧结材料要经受高达1250℃的高温,这保证了扩散与良好的颗粒接触。软磁复合材料在不高于500℃的温度进行热处理,因而它本身限制了烧结材料那样的颗粒接触。
5、表面绝缘的效果:纯铁粉与添加05%Kenolube的绝缘粉Somaloy500,均在800MPa压制(密度734g/cm3)并在空气中于500℃热处理30min。结果表明:在50Hz时的总损耗是相似的,但纯铁的总损耗由于较高比例的涡流损耗比例而从60Hz开始迅速增大。表面绝缘层能耐500℃热处理,并保持低的涡流损耗。2 工艺参数对性能的影响 现在可由市场上买到低、中频应用的基于软磁复合材料技术的一系列材料。对比了三种低、中频材料,它们都是基于雾化铁粉添加05%Kenolube,800MPa压制,500℃空气中热处理30mi
6、n。一种材料是ABM10032,粒度小于150μm(100目),具有无机表面绝缘层。另两种材料是Somaloy550,粒度小于400μm(40目)和Somaloy500,粒度小于150μm(100目)。这两种材料具有相同的无机表面绝缘层,并说明了较大粒度对总损耗的影响。Somaloy550具有较高的总损耗,最大直流磁导率为550,而Somaloy500具有较低的总损耗,最大直流磁导率为500。065mm厚的1018叠层钢与冷轧硅钢用于对比。 混粉,压制与热处理的粉末冶金工艺,将决定所能达到的力学与磁学性能。以Somaloy
7、500为例,说明不同工艺的影响。在混粉阶段添加润滑剂有两种选择。Kenolube润滑剂用于传统压制,LB1是一种润滑粘结剂,用于传统压制和温压。 为得到较高的强度,在混粉阶段也可加入有机粘结剂。可是,因为大多数粘结剂并非有效的润滑剂,因而工业生产上既需要粘结剂也需要润滑剂。最低的润滑剂添加量,如05%和最低的粘结剂添加量,如05%,可能导致总有机添加量为1%,在压制后使密度降低。这种材料通常用作1kHz到1MHz的高频铁芯。在低频应用的情形中,为获得高磁感,高密度是很重要的。像LB1一类润滑粘结剂,当在混粉阶段加入时,既起润滑
8、作用又起粘结作用,在固化后可达到较高的横向断裂强度(100MPa)。因而总的有机添加量可限制到06%。 不使用粘结剂也可达到高横向断裂强度(100MPa到200MPa)。这种高横向断裂强度是用蒸汽处理得到的,通常它是用于改善烧结材料耐腐蚀性能的一种技术。这