加速遗传算法在边坡稳定分析中的应用

加速遗传算法在边坡稳定分析中的应用

ID:15561746

大小:20.37 KB

页数:10页

时间:2018-08-04

加速遗传算法在边坡稳定分析中的应用_第1页
加速遗传算法在边坡稳定分析中的应用_第2页
加速遗传算法在边坡稳定分析中的应用_第3页
加速遗传算法在边坡稳定分析中的应用_第4页
加速遗传算法在边坡稳定分析中的应用_第5页
资源描述:

《加速遗传算法在边坡稳定分析中的应用》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、加速遗传算法在边坡稳定分析中的应用摘要:基于圆弧滑动面的假定和遗传算法的思想,提出了用加速遗传算法(AGA)搜索边坡最危险滑动面及其对应的赵最小安全系数的方法。该方法是一种模拟肭生物遗传进化过程的算法,它克服了传统优化方法容易陷入局部极值点和误差传递抑导致不收敛的缺点,具有较高的计算精度┠,适用性强,搜索的最优解更具有全局性。通过一河堤工程实例对其进行了验证。关键词:边坡稳定性 加速遗传算法 危媵险滑动面 最小安全系数边坡稳定性评⒆价是岩土、水利和交通工程中的常见问题,它涉及矿山工程、岩土工程、水利水电工程、铁道工程、公路工程等诸多工程领掸域,能否正确评价其稳定性直接关系到

2、建泰设的资金投入和人民的生命财产安全。边阿坡稳定性分析方法很多,极限平衡法是最疖常用的一种方法,其基本方法是先假设滑固动面,再根据刚体平衡条件计算该滑动面诩的稳定安全系数。稳定计算的目的是找出╅边坡的最小安全系数和相应的滑动面,为耸此必须经过多次试算才能找到,工作量大鸟且容易遗漏最危险滑动面。本文将求解边扩坡的最小安全系数和相应滑动面表示成最优化问题,然后采用加速遗传算法求解。抚10/101边坡稳定计算模型[1]本文采用凸基于圆弧滑动的刚体极限平衡法计算边坡稳定安全系数。假设滑动面为圆柱面、滑动体为刚体,将滑动体划分成条块,计算作用在滑动块上的滑动力和抗滑力,由此嵬得到稳定安

3、全系数。瑞典条分法瑞典进条分法不考虑土条间的相互作用力,根据宪滑块的抗滑力矩和滑动力矩的比值计算稳刖定安全系数,其表达式为:式中:FS诽——边坡稳定安全系数;Wi——土条重灿量;qi——土条滑弧中心处切线与水平й线的夹角;li——土条滑弧弧长;ui汽——土条滑弧中心处的孔隙压力;h’、倍c’——滑动面上的有效抗剪强度。简璩化毕肖普法该方法考虑土条间水平方向樨的相互作用力,并假定各土条底部滑动面㈥上的滑动安全系数均相同,即等于整个滑哒动面的安全系数,计算公式为:式中,竭;b为土条宽度;其余参数与式同。最户优化模型边坡稳定分析的目的是在所有醪可能滑弧中找出安全系数最小的滑弧,即最危险的

4、滑动面。这实际上是一个优化问10/10辐题,本文以圆心坐标及坡底滑出点的坐标躞来定义滑弧,以由式或式定义的安全系数蠡为优化问题的目标函数,则边坡稳定问题将可表示为如下最优化问题:  其中鲋,,和分别为和的取值范围。对式的求炼解常采用二分法、法等方法[2],但这ぁ些传统的优化方法有可能由于收敛于局部闪最优点不能得到最小安全系数,进而影响戎对边坡稳定性的正确评价。本文采用具有污全局收敛性的遗传算法求解式,可以很好⒐的解决这个问题。2边坡稳定分析的加速遗传算法 加速遗传算法简介遗传算法是模拟自然界生物进化过程提出的一种自适应随机性优化搜索算法[3]。届该算法首先随机产生种群,并用合理

5、的评诰价函数对种群进行评估,在此基础上进行驮选择、交叉及变异等遗传操作,进行具有谦导向性的随机搜索,直至得到最优解。基愚本遗传算法求解步骤主要包括:首先随机隹生成最优化问题的N个可行解,并对解进翡行编码,我们称这N个解为父代,每个解版为一个个体,解的编码为染色体,组成编码的元素为基因。然后确定适当的评价函鲧10/10数,每个染色体的评价函数值的大小决定了其按照某个概率被选择产生后代的机会裨的大小。第三是染色体的结合,根据适当幻的概率,选择的父代进行两两配对,通过寥编码间的交叉产生新的个体。最后是变异裰,按适当的概率,使新一代的某些基因发胜生变化。变异操作使解具有更大的遍历性毪,有

6、利于收敛到全局最优点。基本遗传舰算法对各种实际问题的搜索空间的大小变轱化适应能力较差,计算量大,容易出现早潍熟现象。金菊良[4]利用基本遗传算法v运行过程中搜索到的最优个体逐步调整优佐化变量的搜索区间,形成一种改进的遗传老算法,称为加速遗传算法。用AGA确勒定边坡最危险滑动面确定边坡最危险滑动面的优化模型如式所示,用AGA求解的基本步骤如下:(1)初始群体的确焙定及编码本文采用浮点向量编码,每个崆遗传染色体为,根据给定的xO、yO和骟xA的初始变化区间,随机地生成N个染色体,由此得到初始群体,(i=1,2謇,…,N),这里取种群规模N=300重。(2)评价与选择以目标函数的值

7、Fs1、Fs2、…、FsN从小到大(阋10/10即染色体由好到坏)进行排序,由此定义葙如下基于序号的评价函数  这里,璁本文取a=0。采用轮盘赌的方法,每蝶次旋转均从初始群体中选择一个染色体,蓐旋转赌轮N次可得到N个复制染色体。这燹样就得到了两组各N个个体的父代种群。夜(3)交叉操作取交叉概率Pc为,纺对前面的到的两组父代染色体随机两两配对,组成对双亲进行交叉操作。设第i对撰双亲为与,交叉后产生的两个新染色体为卜X和Y,则 其中,c为开区间中的顾一个随机

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。