资源描述:
《必修3第3章概率答案》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、课堂练习与自我测评答案第一节:1,D2,C3,解:这种说法是错误的.概率是在大量试验的基础上得到的,更是多次试验的结果,它是各次试验频率的抽象,题中所说的0.10,只是一次试验的频率,它不能称为概率4,(1)0.490.540.500.50(2)0.501,C2,D3,D4,答案:(1)(2)(4)(6)5,0≤P(A)≤1106,解:从概率的统计定义出发,击中靶心的概率是0.9并不意味着射击10次就一定能击中9次,只有进行大量射击试验时,击中靶心的次数约为n,其中n为射击次数,而且当n越大,射击的次数就越接近于n.7,解:(1)可能的结果有(正,正,正),(正,正,反),(正
2、,反,正),(反,正,正),(正,反,反),(反,正,反),(反,反,正),(反,反,反)8种可能.(2)其中恰有一枚硬币正面朝上(正,反,反),(反,正,反),(反,反,正)有3种不同的结果.8,答案:由表格中的数据可知,该猕猴桃种子的发芽率为80%.第二节:1.解:依据互斥事件的定义,即事件A与事件B在一定试验中不会同时发生知:(1)恰好有1件次品和恰好有2件次品不可能同时发生,因此它们是互斥事件,又因为它们的并不是必然事件,所以它们不是对立事件,同理可以判断:(2)中的2个事件不是互斥事件,也不是对立事件。(3)中的2个事件既是互斥事件也是对立事件。2.解:“出现奇数点”
3、的概率是事件A,“出现2点”的概率是事件B,“出现奇数点或2点”的概率之和为P(C)=P(A)+P(B)=+=3.解:(1)该射手射中10环与射中9环的概率是射中10环的概率与射中9环的概率的和,即为0.21+0.23=0.44。(2)射中不少于7环的概率恰为射中10环、9环、8环、7环的概率的和,即为0.21+0.23+0.25+0.28=0.97,而射中少于7环的事件与射中不少于7环的事件为对立事件,所以射中少于7环的概率为1-0.97=0.03。4.解:从盒子中任意取出2粒恰好是同一色的概率恰为取2粒白子的概率与2粒黑子的概率的和,即为+=1.答案:B2答案:C3答案:D
4、4.答案:D5.答案:B6.答案:(1)0.05(2)0.3(3)0.257.答案:0.510.228.答案:第三节:1.B[提示:在40根纤维中,有12根的长度超过30mm,即基本事件总数为40,且它们是等可能发生的,所求事件包含12个基本事件,故所求事件的概率为,因此选B.]2.C[提示:(方法1)从盒中任取一个铁钉包含基本事件总数为10,其中抽到合格铁订(记为事件A)包含8个基本事件,所以,所求概率为P(A)==.(方法2)本题还可以用对立事件的概率公式求解,因为从盒中任取一个铁钉,取到合格品(记为事件A)与取到不合格品(记为事件B)恰为对立事件,因此,P(A)=1-P(
5、B)=1-=.]3.[提示;记大小相同的5个球分别为红1,红2,白1,白2,白3,则基本事件为:(红1,红2),(红1,白1),(红1,白2)(红1,白3),(红2,白3),共10个,其中至少有一个红球的事件包括7个基本事件,所以,所求事件的概率为.本题还可以利用“对立事件的概率和为1”来求解,对于求“至多”“至少”等事件的概率头问题,常采用间接法,即求其对立事件的概率P(A),然后利用P(A)1-P(A)求解]。4.解:在抛掷2颗骰子的试验中,每颗骰子均可出现1点,2点,…,6点6种不同的结果,我们把两颗骰子标上记号1,2以便区分,由于1号骰子的一个结果,因此同时掷两颗骰子的
6、结果共有6×6=36种,在上面的所有结果中,向上的点数之和为8的结果有(2,6),(3,5),(4,4),(5,3),(6,2)5种,所以,所求事件的概率为.1、B2、C3、C4、C5、6、0.37、答:P==8、解:根据题意,由五个数字组成的电话号码中的每个数字可以是由0到9这十个数字中的任一个,因此所有不同的电话号码的种数为105、另外,其中由五个不同数字组成的电话号码的个数,就是从这10个数字中任取5个出来进行排列的种数A105,因此所求的概率P==第四节:1.解:具体操作如下键入PRBPANDRANDISTATDEGENTERPANDI(1,20)STATDEGENTE
7、RPANDI(1,20)3.STATDEGENTER反复按键10次即可得到。2.解:具体操作如下:PRBPANDRANDISTATDEGENTERPANDI(0,1)STATDEGENTERPANDI(0,1)0STATDEG键入课本133页练习。答案见教参。第五节:1.由几何概型知,所求事件A的概率为P(A)=;2.记“灯与两端距离都大于2m”为事件A,则P(A)==.3.解:把“硬币不与任一条平行线相碰”的事件记为事件A,为了确定硬币的位置,由硬币中心O向靠得最近的平行线引垂线OM,垂足