主成分分析与因子分析之比较及实证分析

主成分分析与因子分析之比较及实证分析

ID:15443498

大小:370.00 KB

页数:10页

时间:2018-08-03

主成分分析与因子分析之比较及实证分析_第1页
主成分分析与因子分析之比较及实证分析_第2页
主成分分析与因子分析之比较及实证分析_第3页
主成分分析与因子分析之比较及实证分析_第4页
主成分分析与因子分析之比较及实证分析_第5页
资源描述:

《主成分分析与因子分析之比较及实证分析》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、主成分分析与因子分析之比较及实证分析出处:南京财经大学  发布日期:2007年06月22日14:44  一、问题的提出  在科学研究或日常生活中,常常需要判断某一事物在同类事物中的好坏、优劣程度及其发展规律等问题。而影响事物的特征及其发展规律的因素(指标)是多方面的,因此,在对该事物进行研究时,为了能更全面、准确地反映出它的特征及其发展规律,就不应仅从单个指标或单方面去评价它,而应考虑到与其有关的多方面的因素,即研究中需要引入更多的与该事物有关系的变量,来对其进行综合分析和评价。多变量大样本资料无疑能给研究人员或决策者提供很多有价值的信息,但在分析处理多

2、变量问题时,由于众变量之间往往存在一定的相关性,使得观测数据所反映的信息存在重叠现象。因此为了尽量避免信息重叠和减轻工作量,人们就往往希望能找出少数几个互不相关的综合变量来尽可能地反映原来数据所含有的绝大部分信息。而主成分分析和因子分析正是为解决此类问题而产生的多元统计分析方法。  近年来,这两种方法在社会经济问题研究中的应用越来越多,其应用范围也愈加广泛。因子分析是主成分分析的推广和发展,二者之间就势必有着许多共同之处,而issuedonbehalfonthebasisofquality,speedupthecompilationprogress,is

3、nowcalledPinglianginformationcompletedraftwritingtasksandlowerlocalextensionofthedatacollection.JingningSPSS软件不能直接进行主成分分析,致使一些应用者在使用SPSS进行这两种方法的分析时,常常会出现一些混淆性的错误,这难免会使人们对分析结果产生质疑。因此,有必要在运用SPSS分析时,将这两种方法加以严格区分,并针对实际问题选择正确的方法。  二、主成分分析与因子分析的联系与区别  两种方法的出发点都是变量的相关系数矩阵,在损失较少信息的前提下,把多

4、个变量(这些变量之间要求存在较强的相关性,以保证能从原始变量中提取主成分)综合成少数几个综合变量来研究总体各方面信息的多元统计方法,且这少数几个综合变量所代表的信息不能重叠,即变量间不相关。  主要区别:  1.主成分分析是通过变量变换把注意力集中在具有较大变差的那些主成分上,而舍弃那些变差小的主成分;因子分析是因子模型把注意力集中在少数不可观测的潜在变量(即公共因子)上,而舍弃特殊因子。  2.主成分分析是将主成分表示为原观测变量的线性组合,          (1)  主成分的个数i=原变量的个数p,其中j=1,2,…,p,是相关矩阵的特征值所对应的

5、特征向量矩阵中的元素,是原始变量的标准化数据,均值为0,方差为1。其实质是p维空间的坐标变换,不改变原始数据的结构。  而因子分析则是对原观测变量分解成公共因子和特殊因子两部分。因子模型如式(2),          (2)  其中i=1,2,…,p,m

6、rogress,isnowcalledPinglianginformationcompletedraftwritingtasksandlowerlocalextensionofthedatacollection.Jingning,是唯一确定的、正交的。不可以对系数矩阵进行任何的旋转,且系数大小并不代表原变量与主成分的相关程度;而因子模型的系数矩阵是不唯一的、可以进行旋转的,且该矩阵表明了原变量和公共因子的相关程度。  4.主成分分析,可以通过可观测的原变量X直接求得主成分Y,并具有可逆性;因子分析中的载荷矩阵是不可逆的,只能通过可观测的原变量去估计不可观

7、测的公共因子,即公共因子得分的估计值等于因子得分系数矩阵与原观测变量标准化后的矩阵相乘的结果。还有,主成分分析不可以像因子分析那样进行因子旋转处理。  5.综合排名。主成分分析一般依据第一主成分的得分排名,若第一主成分不能完全代替原始变量,则需要继续选择第二个主成分、第三个等等,此时综合得分=∑(各主成分得分×各主成分所对应的方差贡献率),主成分得分是将原始变量的标准化值,代入主成分表达式中计算得到;而因子分析的综合得分=∑(各因子得分×各因子所对应的方差贡献率)÷∑各因子的方差贡献率,因子得分是将原始变量的标准化值,代入因子得分函数中计算得到。  区别

8、中存联系,联系中显区别  由于上文提到主成分可表示为原观测变量的线性组合,其系数

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。