三角函数公式大全与立方公式

三角函数公式大全与立方公式

ID:15411052

大小:140.50 KB

页数:5页

时间:2018-08-03

三角函数公式大全与立方公式_第1页
三角函数公式大全与立方公式_第2页
三角函数公式大全与立方公式_第3页
三角函数公式大全与立方公式_第4页
三角函数公式大全与立方公式_第5页
资源描述:

《三角函数公式大全与立方公式》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、【立方计算公式,不是体积计算公式】完全立方和公式  (a+b)^3=(a+b)(a+b)(a+b)=(a^2+2ab+b^2)(a+b)=a^3+3(a^2)b+3a(b^2)+b^3   完全立方差公式  (a-b)^3=(a-b)(a-b)(a-b)=(a^2-2ab+b^2)(a-b)=a^3-3(a^2)b+3a(b^2)-b^3 立方和公式:  a^3+b^3=(a+b)(a^2-ab+b^2)立方差公式:  a^3-b^3=(a-b)(a^2+ab+b^2)3项立方和公式:  a^3+b^3+c^3-3abc=(a

2、+b+c)(a^2+b^2+c^2-ab-bc-ac)三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-cosAsinBcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=tan(A-B)=cot(A+B)=cot(A-B)=倍角公式tan2A=Sin2A=2SinA•CosACos2A=Cos2A-Sin2A=2Cos2A-1=1-2sin2A三倍角公式sin3A=3sinA-4(sinA)3co

3、s3A=4(cosA)3-3cosAtan3a=tana·tan(+a)·tan(-a)半角公式sin()=cos()=tan()=cot()=tan()==和差化积sina+sinb=2sincossina-sinb=2cossincosa+cosb=2coscoscosa-cosb=-2sinsintana+tanb=积化和差sinasinb=-[cos(a+b)-cos(a-b)]cosacosb=[cos(a+b)+cos(a-b)]sinacosb=[sin(a+b)+sin(a-b)]cosasinb=[sin(a

4、+b)-sin(a-b)]诱导公式sin(-a)=-sinacos(-a)=cosasin(-a)=cosacos(-a)=sinasin(+a)=cosacos(+a)=-sinasin(π-a)=sinacos(π-a)=-cosasin(π+a)=-sinacos(π+a)=-cosatgA=tanA=万能公式sina=cosa=tana=其它公式a•sina+b•cosa=×sin(a+c)[其中tanc=]a•sin(a)-b•cos(a)=×cos(a-c)[其中tan(c)=]1+sin(a)=(sin+cos)

5、21-sin(a)=(sin-cos)2其他非重点三角函数csc(a)=sec(a)=双曲函数sinh(a)=cosh(a)=tgh(a)=公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间

6、的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:±α及±α与α的三角函数值之间的关系:sin(+

7、α)=cosαcos(+α)=-sinαtan(+α)=-cotαcot(+α)=-tanαsin(-α)=cosαcos(-α)=sinαtan(-α)=cotαcot(-α)=tanαsin(+α)=-cosαcos(+α)=sinαtan(+α)=-cotαcot(+α)=-tanαsin(-α)=-cosαcos(-α)=-sinαtan(-α)=cotαcot(-α)=tanα(以上k∈Z)这个物理常用公式我费了半天的劲才输进来,希望对大家有用A•sin(ωt+θ)+B•sin(ωt+φ)=×sin三角函数公式证明(

8、全部)2009-07-0816:13公式表达式乘法与因式分解a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b)(a2+ab+b2)三角不等式

9、a+b

10、≤

11、a

12、+

13、b

14、

15、a-b

16、≤

17、a

18、+

19、b

20、

21、a

22、≤b<=>-b≤a≤b

23、a-b

24、

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。