欢迎来到天天文库
浏览记录
ID:15387960
大小:447.05 KB
页数:5页
时间:2018-08-03
《相似与动点问题专题》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想函数思想方程思想数形结合思想转化思想注重对几何图形运动变化能力的考查从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形
2、在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。动态几何中的相似三角形例1、如图,在梯形中,,,,,梯形的高为.动点从点出发沿线段以每秒2个单位长度的速度向终点运动;动点同时从点出发沿线段以每秒1个单位长度的速度向终点运动.设运动的时间为(秒).(1)当时,求的值;(2)试探究:为何值时,为直角三角形.变式练习1:如图所示,在ΔABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿
3、着AB以每秒4cm的速度向B点运动;同时点Q从C点出发,沿CA以每秒3cm的速度向A点运动,设运动时间为x。(1)当x为何值时,PQ∥BC?(2)当,求的值;(3)ΔAPQ能否与ΔCQB相似?若能,求出AP的长;若不能,请说明理由。OPAQByx变式练习2:如图,已知直线的函数表达式为,且与轴,轴分别交于两点,动点从点开始在线段上以每秒2个单位长度的速度向点移动,同时动点从点开始在线段上以每秒1个单位长度的速度向点移动,设点移动的时间为秒.(1)求出点的坐标;(2)当为何值时,与相似?(3)求出(2)中当与相似时,线段所在直线的函数表
4、达式.变式练习1:已知在Rt△ABC中,∠ABC=90º,∠A=30º,点P在AC上,且∠MPN=90当点P为线段AC的中点,点M、N分别在线段AB、BC上时(如图1),过点P作PE⊥AB于点E,PF⊥BC于点F,可证t△PME∽t△PNF,得出PN=PM.(不需证明)当PC=PA,点M、N分别在线段AB、BC或其延长线上,如图2、图3这两种情况时,请写出线段PN、PM之间的数量关系,并任选取一给予证明.变式练习2(备用):如图1,在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90
5、°,它们的斜边长为2,若∆ABC固定不动,∆AFG绕点A旋转,AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合),设BE=m,CD=n.(1)请在图中找出两对相似而不全等的三角形,并选取其中一对进行证明.(2)求m与n的函数关系式,直接写出自变量n的取值范围.(3)以∆ABC的斜边BC所在的直线为x轴,BC边上的高所在的直线为y轴,建立平面直角坐标系(如图12).在边BC上找一点D,使BD=CE,求出D点的坐标,并通过计算验证BD+CE=DE.Gyx图2OFEDCBAG图1FEDCBA(4)在旋转过程中,(3)
6、中的等量关系BD+CE=DE是否始终成立,若成立,请证明,若不成立,请说明理由.例3、如图1,中,,cm,矩形的长和宽分别为8cm和2cm,点和点重合,和在一条直线上.令不动,矩形沿所在直线向右以每秒1cm的速度移动(如图2),直到点与点重合为止.设移动秒后,矩形与重叠部分的面积为.求与之间的函数关系式.ABDPNC(M)22图2图1变式练习1:如图,在等腰梯形中,,,,.等腰直角三角形的斜边,点与点重合,和在一条直线上,设等腰梯形不动,等腰直角三角形沿所在直线以的速度向右移动,直到点与点重合为止.(1)等腰直角三角形在整个移动过程中
7、与等腰梯形重叠部分的形状由形变化为形;(2)设当等腰直角三角形移动时,等腰直角三角形与等腰梯形重叠部分的面积为,求与之间的函数关系式;(3)当时,求等腰直角三角形与等腰梯形重叠部分的面积.A(N)MPDCBANMPDCB变式练习1:如图,在梯形ABCD中,,,,,点由B出发沿BD方向匀速运动,速度为1cm/s;同时,线段EF由DC出发沿DA方向匀速运动,速度为1cm/s,交于Q,连接PE.若设运动时间为(s)().解答下列问题:AEDQPBFC(1)当为何值时,?(2)设的面积为(cm2),求与之间的函数关系式;(3)是否存在某一时刻
8、,使?变式练习2:在Rt△ABC中,∠C=90°,AC=3,AB=5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运
此文档下载收益归作者所有