燃料电池车载大功率dcdc变换器的设计与应用

燃料电池车载大功率dcdc变换器的设计与应用

ID:15355018

大小:226.50 KB

页数:9页

时间:2018-08-02

燃料电池车载大功率dcdc变换器的设计与应用_第1页
燃料电池车载大功率dcdc变换器的设计与应用_第2页
燃料电池车载大功率dcdc变换器的设计与应用_第3页
燃料电池车载大功率dcdc变换器的设计与应用_第4页
燃料电池车载大功率dcdc变换器的设计与应用_第5页
资源描述:

《燃料电池车载大功率dcdc变换器的设计与应用》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、燃料电池车载大功率DCDC变换器的设计与应用时间:2009-07-302745次阅读【网友评论0条我要评论】 收藏1,前言DC/DC变换器是燃料电池车动力系统中一个重要部分。主要功能是把不可调的直流电源变为可调的直流电源。如何有效地控制变换器的各个参数,不仅关系到FCE(FuelCellEngineer)和BMU(BatteryManagementUnit)的正常运行,而且也关系到整个燃料电池轿车的动力性能、能源利用效率及其他控制系统可靠的运行[3]。燃料电池的输出特性偏软,难以直接与电动机驱动器匹配,其电流-电压特性曲线如图1所示。在燃料电池

2、加负载的起始阶段,电压Ufc下降较快,随着负载的增加,电流增大,电压下降,下降的斜率比普通电池大得多,故燃料电池的输出特性相对较软;对于某特定负载,输出功率的波动会导致燃料电池效率下降。 图1  燃料电池电流-电压特性曲线              图2 燃料电池车能源驱动结构与传统汽车一样,燃料电池汽车也必须具有很强的机动性,以便对不同的路况及时做出相应的反应,为满足机动性的要求,燃料电池汽车驱动所需功率会有较大的波动,这与燃料电池的输出特性偏软是相矛盾的。另一方面,燃料电池的输出功率若波动较大,其效率会大大下降,反面影响其机动性能。因此,若

3、以燃料电池作为电源直接驱动,一方面输出特性偏软,另一方面燃料电池的输出电压较低,在燃料电池与汽车驱动之间加入DC/DC变换器,燃料电池和DC/DC变换器共同组成电源对外供电如图2所示,从而转换成稳定、可控的直流电源。合理的DC/DC变换器的设计对燃料电池车显的尤为重要。2,DC/DC基本硬件电路及工作原理DC/DC变换器按输入与输出间是否有电气隔离可以分为没有电气隔离和有电器隔离的直流变化器两类。按工作电路区分有降压式(BUCK),升压式(BOOST),升降压式(BUCK/BOOST),库克(CUK),瑞泰(ZETA),塞皮克(SEPIC)等六

4、种[1]。设计采用没有隔离的双向Zeta-Sepic直流变换器电路,工作原理电路图如图3所示。主电路由两开关管Q1和Q2,两二极管D1和D2构成。Q1和Q2为PWM工作方式,互补导通,有死区时间。变换器输出与输入电压间的关系为V2/V1=Dy/(1-Dy),式中,Dy为                                                图3双向Zeta-Sepic直流变换器设计电路图 图4 能量从V1向V2流动                                   图5 能量从V2向V1方向流动    

5、      图6 交替工作方式                        Q2的占空比。图4为能量从V1向V2方向流动时电感电流波形,因Dy>0.5,故V2>V1,I1>I2,I1为电源电流平均值,I2为输出电流平均值。并且IL1>IL2,IL1和IL2为电感电流平均值。电容C1电压VC1为VC1=VC2,不论能量流动方向如何,电容C1电压极性总是左负右正。功率器件承受的电压VQ=VD=V1+V2=V1/(1-Dy),开关管Q1和二极管D2电流平均值IQ1和ID2关系为IQ1=IL1=I1,ID2=IL2=I2。能量传输方向相反时,电流波形

6、如图5所示,图6是交替工作方式的一种情形,因Q1的占空比Dy>0.5,V2>V1,I1>I2,故IL1>IL2,iL1的瞬时值都大于零,iL2的瞬时值出现了正负交替变化,iQ1和iQ2的瞬时值也交替变化,4个器件轮流导通[2]。在t=0~t1期间D1续流,t1~ton期间Q1导通,ton~t3期间D2续流,t3~T期间Q2导通。由于Q1是在D1续流期间导通的,故Q1为零电压开通,同理Q2亦为零电压开通,由图6知两电感电流平均值IL1和IL2均大于零,故这种情况下平均能量是从V1向V2方向传输。                         3

7、,DC/DC变换器控制单元和辅助单元电路设计Zeta-Sepic电路是DC/DC变换器的核心组件,车载DC/DC变换器除此外还包括           控制单元和辅助单元电路,其性能直接影响Zeta-Sepic电路的工作质量和整车控制器的准确运行。控制单元与辅助单元电路同Zeta-Sepic一同构成DC/DC变换器的总体硬件电路。其系统结构图如图7所示。     图7  DC/DC变换器系统结构图3.1控制单元控制单元选用单片机MC9S12D64,它延续了飞思卡尔半导体在车用微控制器领域的优良传统,是以速度更快的S12内核(StarCore)为

8、核心的单片机MC9S12系列的成员,管脚兼容,存储器可以得到升级。并且片内有多种外围设备可供选择。MC9S12D64共有8种工作模式,模式的设定通过复

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。