fraccalc(分数阶导数)

fraccalc(分数阶导数)

ID:15346725

大小:270.99 KB

页数:28页

时间:2018-08-02

fraccalc(分数阶导数)_第1页
fraccalc(分数阶导数)_第2页
fraccalc(分数阶导数)_第3页
fraccalc(分数阶导数)_第4页
fraccalc(分数阶导数)_第5页
资源描述:

《fraccalc(分数阶导数)》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、FractionalCalculus:History,De¯nitionsandApplicationsfortheEngineerAdamLoverroDepartmentofAerospaceandMechanicalEngineeringUniversityofNotreDameNotreDame,IN46556,U.S.A.May8,2004AbstractThisreportisaimedattheengineeringand/orscienti¯cprofessionalwhowishestolearnaboutFrac-tionalCal

2、culusanditspossibleapplicationsinhis/her¯eld(s)ofstudy.Theintentisto¯rstexposethereadertotheconcepts,applicablede¯nitions,andexecutionoffractionalcalculus(includingadiscussionofnotation,operators,andfractionalorderdi®erentialequations),andsecondtoshowhowthesemaybeusedtosolveseve

3、ralmodernproblems.Alsoincludedwithinisalistofapplicablereferencesthatmayprovidethereaderwithalibraryofinformationforthefurtherstudyanduseoffractionalcalculus.1IntroductionThetraditionalintegralandderivativeare,tosaytheleast,astapleforthetechnologyprofessional,essentialasameansof

4、understandingandworkingwithnaturalandarti¯cialsystems.FractionalCalculusisa¯eldofmathematicstudythatgrowsoutofthetraditionalde¯nitionsofthecalculusintegralandderivativeoperatorsinmuchthesamewayfractionalexponentsisanoutgrowthofexponentswithintegervalue.Considerthephysicalmeaning

5、oftheexponent.Accordingtoourprimaryschoolteachersexponentsprovideashortnotationforwhatisessentiallyarepeatedmultiplicationofanumericalvalue.Thisconceptinitselfiseasytograspandstraightforward.However,thisphysicalde¯nitioncanclearlybecomeconfusedwhenconsideringexponentsofnonintege

6、rvalue.Whilealmostanyonecanverify1thatx3=x¦x¦x,howmightonedescribethephysicalmeaningofx3:4,ormoreoverthetranscendentalexponentx¼.Onecannotconceivewhatitmightbeliketomultiplyanumberorquantitybyitself3.4times,or¼times,andyettheseexpressionshaveade¯nitevalueforanyvaluex,veri¯ableby

7、in¯niteseriesexpansion,ormorepractically,bycalculator.Now,inthesamewayconsidertheintegralandderivative.Althoughtheyareindeedcon-ceptsofahighercomplexitybynature,itisstillfairlyeasytophysicallyrepresenttheirmeaning.Oncemastered,theideaofcompletingnumerousoftheseoperations,integra

8、tionsordi®erentiationsfollowsnaturally.Giventhe

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。