第4章adams软件算法基本理论

第4章adams软件算法基本理论

ID:15302927

大小:423.00 KB

页数:17页

时间:2018-08-02

第4章adams软件算法基本理论_第1页
第4章adams软件算法基本理论_第2页
第4章adams软件算法基本理论_第3页
第4章adams软件算法基本理论_第4页
第4章adams软件算法基本理论_第5页
资源描述:

《第4章adams软件算法基本理论》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、第4章ADAMS软件基本算法第4章ADAMS软件基本算法本章主要介绍ADAMS软件的基本算法,包括ADAMS建模中的一些基本概念、运动学分析算法、动力学分析算法、静力学分析及线性化分析算法以及ADAMS软件积分器介绍。通过本章的学习可以对ADAMS软件的基本算法有较深入的了解,为今后合理选择积分器进行仿真分析提供理论基础,为更好地使用ADAMS打下良好的理论基础。4.1ADAMS建模基础ADAMS利用带拉格朗日乘子的第一类拉格朗日方程导出――最大数量坐标的微分-代数方程(DAE)。它选取系统内每个刚体质心在惯性参考系中的三个直角坐标和确定刚体方位的三个欧拉角作为笛卡尔广义坐标

2、,用带乘子的拉格朗日第一类方程处理具有多余坐标的完整约束系统或非完整约束系统,导出以笛卡尔广义坐标为变量的动力学方程。4.1.1参考标架在计算系统中构件的速度和加速度时,需要指定参考标架,作为该构件速度和加速度的参考坐标系。在机械系统的运动分析过程中,有两种类型的参考标架——地面参考标架和构件参考标架。地面参考标架是一个惯性参考系,它固定在一个“绝对静止”的空间中。通过地面参考标架建立机械系统的“绝对静止”参考体系,属于地面标架上的任何一点的速度和加速度均为零。对于大多数问题,可以将地球近似为惯性参考标架,虽然地球是绕着太阳旋转而且地球还有自转。对于每一个刚性体都有一个与之固

3、定的参考标架,称为构件参考标架,刚性体上的各点相对于该构件参考标架是静止的。4.1.2坐标系的选择机械系统的坐标系广泛采用直角坐标系,常用的笛卡尔坐标系就是一个采用右手规则的直角坐标系。运动学和动力学的所有矢量均可以用沿3个单位坐标矢量的分量来表示。坐标系可以固定在一个参考标架上,也可以相对于参考框架而运动。合理地设置坐标系可以简化机械系统的运动分析。在机械系统运动分析过程中,经常使用3种坐标系:(1)地面坐标系(GroundCoordinateSystem)。地面坐标系又称为静坐标系,是固定在地面标架上的坐标系。ADAMS中,所有构件的位置、方向和速度都用地面坐标系表示。(

4、2)局部构件参考坐标系(LocalPartReferenceFrame,LPRF)。这个坐标系固定在构件上并随构件运动。每个构件都有一个局部构件参考坐标系,可以通过确定局部构件参考坐标系在地面坐标系的位置和方向,来确定一个构件的位置和方向。在ADAMS中,局部构件参考坐标系缺省与地面坐标系重合。(3)标架坐标系(MarkerSystem)。标架坐标系又称为标架,是为了简化建模和分析在构件上设立的辅助坐标系,有两种类型的标架坐标系:固定标架和浮动标架。固定标第4章ADAMS软件基本算法架固定在构件上,并随构件运动。可以通过固定标架在局部构件参考坐标系中的位置和方向,确定固定标架

5、坐标系的位置和方向。固定标架可以用来定义构件的形状、质心位置、作用力和反作用力的作用点、构件之间的连接位置等。浮动标记相对于构件运动,在机械系统的运动分析过程中,有些力和约束需要使用浮动标架来定位。动力学方程的求解速度很大程度上取决于广义坐标的选择。研究刚体在惯性空间中的一般运动时,可以用它的质心标架坐标系确定位置,用质心标架坐标相对地面坐标系的方向余弦矩阵确定方位。为了解析地描述方位,必须规定一组转动广义坐标表示方向余弦矩阵。第一种方法是用方向余弦矩阵本身的元素作为转动广义坐标,但是变量太多,同时还要附加六个约束方程;第二种方法是用欧拉角或卡尔登角作为转动坐标,它的算法规范

6、,缺点是在逆问题中存在奇点,在奇点位置附近数值计算容易出现困难;第三种方法是用欧拉参数作为转动广义坐标,它的变量不太多,由方向余弦计算欧拉角时不存在奇点。ADAMS软件用刚体的质心笛卡尔坐标和反映刚体方位的欧拉角作为广义坐标,即,。由于采用了不独立的广义坐标,系统动力学方程虽然是最大数量,但却是高度稀疏耦合的微分代数方程,适用于稀疏矩阵的方法高效求解。4.2ADAMS运动学分析4.2.1ADAMS运动学方程利用ADAMS建立机械系统仿真模型时,系统中构件与地面或构件与构件之间存在运动副的联接,这些运动副可以用系统广义坐标表示为代数方程,这里仅考虑完整约束。设表示运动副的约束方

7、程数为,则用系统广义坐标矢量表示的运动学约束方程组为:((4.2--1)考虑运动学分析,为使系统具有确定运动,要使系统实际自由度为零,为系统施加等于自由度()的驱动约束:…………………………………………………………(4.2--2)在一般情况下,驱动约束是系统广义坐标和时间的函数。驱动约束在其集合内部及其与运动学约束合集中必须是独立和相容的,在这种条件下,驱动系统运动学上是确定的,将作确定运动。由式(4.2-1)表示的系统运动学约束和式(4.2-2)表示的驱动约束组合成系统所受的全部约束:第4章ADAMS

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。