三角函数诱导公式

三角函数诱导公式

ID:15268514

大小:79.00 KB

页数:6页

时间:2018-08-02

三角函数诱导公式_第1页
三角函数诱导公式_第2页
三角函数诱导公式_第3页
三角函数诱导公式_第4页
三角函数诱导公式_第5页
资源描述:

《三角函数诱导公式》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、公式一:  设α为任意角,终边相同的角的同一三角函数的值相等  k是整数 sin(2kπ+α)=sinα  cos(2kπ+α)=cosα  tan(2kπ+α)=tanα  cot(2kπ+α)=cotα  sec(2kπ+α)=secα  csc(2kπ+α)=cscα公式二:  设α为任意角,π+α的三角函数值与α的三角函数值之间的关系 sin(π+α)=-sinα  cos(π+α)=-cosα  tan(π+α)=tanα  cot(π+α)=cotα  sec(π+α)=-secα  csc(π+α)=-cscα公式三:  任意角

2、α与-α的三角函数值之间的关系 sin(-α)=-sinα  cos(-α)=cosα  tan(-α)=-tanα  cot(-α)=-cotα  sec(-α)=secα  csc(-α)=-cscα公式四:  利用公式二和公式三可以得到π-α与α的三角函数值之间的关系 sin(π-α)=sinα  cos(π-α)=-cosα  tan(π-α)=-tanα  cot(π-α)=-cotα  sec(π-α)=-secα  csc(π-α)=cscα公式五:  利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系 sin(2π-

3、α)=-sinα  cos(2π-α)=cosα  tan(2π-α)=-tanα  cot(2π-α)=-cotα  sec(2π-α)=secα  csc(2π-α)=-cscα公式六:  π/2±α及3π/2±α与α的三角函数值之间的关系 sin(π/2+α)=cosα  cos(π/2+α)=-sinα  tan(π/2+α)=-cotα  cot(π/2+α)=-tanα  sec(π/2+α)=-cscα  csc(π/2+α)=secα  sin(π/2-α)=cosα  cos(π/2-α)=sinα  tan(π/2-α)=

4、cotα  cot(π/2-α)=tanα  sec(π/2-α)=cscα  csc(π/2-α)=secα  sin(3π/2+α)=-cosα  cos(3π/2+α)=sinα  tan(3π/2+α)=-cotα  cot(3π/2+α)=-tanα  sec(3π/2+α)=cscα  csc(3π/2+α)=-secα  sin(3π/2-α)=-cosα  cos(3π/2-α)=-sinα  tan(3π/2-α)=cotα  cot(3π/2-α)=tanα  sec(3π/2-α)=-cscα  csc(3π/2-α)=

5、-secα 诱导公式的表格以及推导方法(定名法则和定号法则)  sinαcosα tanαcotαsecαcscα2kπ+αsinαcosαtanαcotαsecαcscα(1/2)kπ-αcosαsinαcotαtanαcscαsecα(1/2)kπ+αcosα-sinα-cotα-tanα-cscαsecαkπ-αsinα-cosα-tanα-cotα-secαcscαkπ+α-sinα-cosαtanαcotα-secα-cscα(3/2)kπ-α-cosα-sinαcotαtanα-cscα-secα(3/2)kπ+α-cosαsin

6、α-cotα-tanαcscα-secα2kπ-α-sinαcosα-tanα-cotαsecα-cscα﹣α-sinαcosα-tanα-cotαsecα-cscα 定名法则定名法则   90°的奇数倍+α的三角函数,其绝对值与α三角函数的绝对值互为余函数。90°的偶数倍+α的三角函数与α的三角函数绝对值相同。也就是“奇余偶同,奇变偶不变”  定号法则  将α看做锐角(注意是“看做”),按所得的角的象限,取三角函数的符号。也就是“象限定号,符号看象限”.(或为“奇变偶不变,符号看象限”   2在Kπ/中如果K为奇数时函数名不变,若为偶数时函

7、数名变为相反的函数名。正负号看原函数中α所在象限的正负号。关于正负号有可口诀;一全正二正弦,三正切四余弦,即第一象限全部为正,第二象限角正弦为正,第三为正切、余切为正,第四象限余弦为正。)  比如:90°+α。定名:90°是90°的奇数倍,所以应取余函数;定号:将α看做锐角,那么90°+α是第二象限角,第二象限角的正弦为正,余弦为负。所以sin(90°+α)=cosα,cos(90°+α)=-sinα这个非常神奇,屡试不爽~  还有一个口诀“纵变横不变,符号看象限”,例如:sin(90°+α),90°的终边在纵轴上,所以函数名变为相反的函数名

8、,即cos,将α看做锐角,那么90°+α是第二象限角,第二象限角的正弦为正,所以sin(90°+α)=cosα两角和与差的三角函数  cos(α+β)=cosα·c

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。