the galois-theoretic kodaira-spencer morphism of an elliptic curve

the galois-theoretic kodaira-spencer morphism of an elliptic curve

ID:15183148

大小:236.81 KB

页数:28页

时间:2018-08-01

the galois-theoretic kodaira-spencer morphism of an elliptic curve_第1页
the galois-theoretic kodaira-spencer morphism of an elliptic curve_第2页
the galois-theoretic kodaira-spencer morphism of an elliptic curve_第3页
the galois-theoretic kodaira-spencer morphism of an elliptic curve_第4页
the galois-theoretic kodaira-spencer morphism of an elliptic curve_第5页
资源描述:

《the galois-theoretic kodaira-spencer morphism of an elliptic curve》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、TheGalois-TheoreticKodaira-SpencerMorphismofanEllipticCurveShinichiMochizukiJuly2000Contents:§0.Introduction§1.GaloisActionsontheTorsionPoints§2.LagrangianGaloisActions§2.1.DefinitionandConstruction§2.2.RelationtotheCrystallineThetaObject§3.GlobalMultiplicativeSubspaces§4.TheGroupTensorProduct

2、Section0:IntroductionThepurposeofthispaperistostudyingreaterdetailthearithmeticKodaira-Spencermorphismofanellipticcurveintroducedin[Mzk1],ChapterIX,inthegen-eralcontextoftheHodge-Arakelovtheoryofellipticcurves,developedin[Mzk1-3].Inparticular,aftercorrectingaminorerror(cf.Corollary1.6)intheco

3、nstructionofthisarithmeticKodaira-Spencermorphismin[Mzk1],ChapterIX,§3,wedefine(cf.§2.1)aslightlymodified“Lagrangian”versionofthisarithmeticKodaira-Spencermorphismwhichhasthefollowingremarkableproperties:(1)ThisLagrangianarithmeticKodaira-SpencermorphismisfreeofGaussianpoles(cf.Corollary2.5).(2

4、)AcertainportionofthereductionmodulopofthisLagrangianarithmeticKodaira-Spencermorphismmaybenaturallyiden-tifiedwiththeusualgeometricKodaira-Spencermorphism(cf.Corollary2.7).Werecallthatproperty(1)isofsubstantialinterestsinceitistheGaussianpolesthatarethemainobstructiontoapplyingtheHodge-Arakel

5、ovtheoryofellipticcurvestodiophantinegeometry(cf.thediscussionof[Mzk1],Introduction,§5.1,formoredetails).Ontheotherhand,property(2)isofsubstantialinterestinthatTypesetbyAMS-TEX12SHINICHIMOCHIZUKIitshowsquitedefinitivelythattheanalogyassertedin[Mzk1],ChapterIX,betweenthearithmeticKodaira-Spence

6、rmorphismoftheHodge-ArakelovtheoryofellipticcurvesandtheusualgeometricKodaira-Spencermorphismofafamilyofellipticcurvesisnotjustphilosophy,butrigorousmathematics!(cf.theRemarkfollowingCorollary2.7formoredetails).Infact,bothproperties(1)and(2)areessentiallyformalconsequencesofapropertythatweref

7、ertoasthe“crystallinenatureoftheLagrangianGaloisaction”(cf.Theorem2.4).Interestingly,thetheoryof§2ofthepresentpapermakesessentialusenotonlyofthetheoryof[Mzk1],butalsoof[Mzk2],[Mzk3].Unfortunately,however,thisLagrangianarithmeticKodaira-Spence

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。