三角函数恒等变换知识点总结

三角函数恒等变换知识点总结

ID:15174179

大小:546.71 KB

页数:9页

时间:2018-08-01

三角函数恒等变换知识点总结_第1页
三角函数恒等变换知识点总结_第2页
三角函数恒等变换知识点总结_第3页
三角函数恒等变换知识点总结_第4页
三角函数恒等变换知识点总结_第5页
资源描述:

《三角函数恒等变换知识点总结》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、高考网www.gaokao.com三角函数三角恒等变换知识点总结一、角的概念和弧度制:(1)在直角坐标系内讨论角:角的顶点在原点,始边在轴的正半轴上,角的终边在第几象限,就说过角是第几象限的角。若角的终边在坐标轴上,就说这个角不属于任何象限,它叫象限界角。(2)①与角终边相同的角的集合:与角终边在同一条直线上的角的集合:;与角终边关于轴对称的角的集合:;与角终边关于轴对称的角的集合:;与角终边关于轴对称的角的集合:;②一些特殊角集合的表示:终边在坐标轴上角的集合:;终边在一、三象限的平分线上角的集合:;终边在二、四象限的平分线上角的集合:;终边在四个象限的平分线上角的集合:;(3)区间

2、角的表示:①象限角:第一象限角:;第三象限角:;第一、三象限角:;②写出图中所表示的区间角:xyOxyO(4)正确理解角:要正确理解“间的角”=;“第一象限的角”=;“锐角”=;“小于的角”=;(5)由的终边所在的象限,通过来判断所在的象限。来判断所在的象限(6)弧度制:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零;任一高考网www.gaokao.com高考网www.gaokao.com已知角的弧度数的绝对值,其中为以角作为圆心角时所对圆弧的长,为圆的半径。注意钟表指针所转过的角是负角。(7)弧长公式:;半径公式:;扇形面积公式:;二、任意角的三角函数:(1)任意角的三角函

3、数定义:以角的顶点为坐标原点,始边为轴正半轴建立直角坐标系,在角的终边上任取一个异于原点的点,点到原点的距离记为,则;;;;;;如:角的终边上一点,则。注意r>0(2)在图中画出角的正弦线、余弦线、正切线;xyOaxyOaxyOayOa比较,,,的大小关系:。(3)特殊角的三角函数值:0sincos三、同角三角函数的关系与诱导公式:(1)同角三角函数的关系平方关系sin2+cos2=1,1+tan2=,1+cot2=高考网www.gaokao.com高考网www.gaokao.com商数关系=tan倒数关系tan·cot=1作用:已知某角的一个三角函数值,求它的其余各三角函数值。(2)

4、诱导公式::,,;:,,;:,,;:,,;:,,;:,,;:,,;:,,;:,,;诱导公式可用概括为:2K±,-,±,±,±的三角函数奇变偶不变,符号看象限的三角函数作用:“去负——脱周——化锐”,是对三角函数式进行角变换的基本思路.即利用三角函数的奇偶性将负角的三角函数变为正角的三角函数——去负;利用三角函数的周期性将任意角的三角函数化为角度在区间[0o,360o)或[0o,180o)内的三角函数——脱周;利用诱导公式将上述三角函数化为锐角三角函数——化锐.(3)同角三角函数的关系与诱导公式的运用:①已知某角的一个三角函数值,求它的其余各三角函数值。注意:用平方关系,有两个结果,一般

5、可通过已知角所在的象限加以取舍,或分象限加以讨论。②求任意角的三角函数值。步骤:高考网www.gaokao.com高考网www.gaokao.com任意负角的三角函数任意正角的三角函数0o~360o角的三角函数求值公式三、一公式一0o~90o角的三角函数公式二、四、五、六、七、八、九③已知三角函数值求角:注意:所得的解不是唯一的,而是有无数多个.步骤:①确定角所在的象限;②如函数值为正,先求出对应的锐角;如函数值为负,先求出与其绝对值对应的锐角;③根据角所在的象限,得出间的角——如果适合已知条件的角在第二限;则它是;如果在第三或第四象限,则它是或;④如果要求适合条件的所有角,再利用终边

6、相同的角的表达式写出适合条件的所有角的集合。如,则,;;_________。注意:巧用勾股数求三角函数值可提高解题速度:(3,4,5);(6,8,10);(5,12,13);(8,15,17);四、三角函数图像和性质1.周期函数定义定义 对于函数,如果存在一个不为零的常数,使得当取定义域内的每一个值时,都成立,那么就把函数叫做周期函数,不为零的常数叫做这个函数的周期.请你判断下列函数的周期y=tanxy=tan

7、x

8、y=

9、tanx

10、例求函数f(x)=3sin(的周期。并求最小的正整数k,使他的周期不大于1高考网www.gaokao.com高考网www.gaokao.com注意理解函数周

11、期这个概念,要注意不是所有的周期函数都有最小正周期,如常函数f(x)=c(c为常数)是周期函数,其周期是异于零的实数,但没有最小正周期.结论:如函数对于,那么函数f(x)的周期T=2k;如函数对于,那么函数f(x)的对称轴是2.图像高考网www.gaokao.com高考网www.gaokao.com3、图像的平移对函数y=Asin(ωx+j)+k(A>0,ω>0,j≠0,k≠0),其图象的基本变换有:(1)振幅变换(纵向伸缩变换):是由A的变化

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。