欢迎来到天天文库
浏览记录
ID:15117185
大小:3.44 MB
页数:128页
时间:2018-08-01
《[精品]高中数学巧构造,妙解题》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、巧构造妙解题1.直接构造例1.求函数的值域。分析:由于可以看作定点(2,3)与动点(-cosx,sinx)连线的斜率,故f(x)的值域即为斜率的最大、最小值。解:令,则表示单位圆表示连接定点P(2,3)与单位圆上任一点(,)所得直线的斜率。显然该直线与圆相切时,k取得最值,此时,圆心(0,0)到这条直线的距离为1,即所以故例2.已知三条不同的直线,,共点,求的值。分析:由条件知为某一元方程的根,于是想法构造出这个一元方程,然后用韦达定理求值。解:设(m,n)是三条直线的交点,则可构造方程,即(*)由条件知,均为关于的一元三次方程(*)的根。由韦达定理知巧构造妙解题
2、1.直接构造例1.求函数的值域。分析:由于可以看作定点(2,3)与动点(-cosx,sinx)连线的斜率,故f(x)的值域即为斜率的最大、最小值。解:令,则表示单位圆表示连接定点P(2,3)与单位圆上任一点(,)所得直线的斜率。显然该直线与圆相切时,k取得最值,此时,圆心(0,0)到这条直线的距离为1,即所以故例2.已知三条不同的直线,,共点,求的值。分析:由条件知为某一元方程的根,于是想法构造出这个一元方程,然后用韦达定理求值。解:设(m,n)是三条直线的交点,则可构造方程,即(*)由条件知,均为关于的一元三次方程(*)的根。由韦达定理知巧构造妙解题1.直接构造
3、例1.求函数的值域。分析:由于可以看作定点(2,3)与动点(-cosx,sinx)连线的斜率,故f(x)的值域即为斜率的最大、最小值。解:令,则表示单位圆表示连接定点P(2,3)与单位圆上任一点(,)所得直线的斜率。显然该直线与圆相切时,k取得最值,此时,圆心(0,0)到这条直线的距离为1,即所以故例2.已知三条不同的直线,,共点,求的值。分析:由条件知为某一元方程的根,于是想法构造出这个一元方程,然后用韦达定理求值。解:设(m,n)是三条直线的交点,则可构造方程,即(*)由条件知,均为关于的一元三次方程(*)的根。由韦达定理知巧构造妙解题1.直接构造例1.求函数
4、的值域。分析:由于可以看作定点(2,3)与动点(-cosx,sinx)连线的斜率,故f(x)的值域即为斜率的最大、最小值。解:令,则表示单位圆表示连接定点P(2,3)与单位圆上任一点(,)所得直线的斜率。显然该直线与圆相切时,k取得最值,此时,圆心(0,0)到这条直线的距离为1,即所以故例2.已知三条不同的直线,,共点,求的值。分析:由条件知为某一元方程的根,于是想法构造出这个一元方程,然后用韦达定理求值。解:设(m,n)是三条直线的交点,则可构造方程,即(*)由条件知,均为关于的一元三次方程(*)的根。由韦达定理知巧构造妙解题1.直接构造例1.求函数的值域。分析
5、:由于可以看作定点(2,3)与动点(-cosx,sinx)连线的斜率,故f(x)的值域即为斜率的最大、最小值。解:令,则表示单位圆表示连接定点P(2,3)与单位圆上任一点(,)所得直线的斜率。显然该直线与圆相切时,k取得最值,此时,圆心(0,0)到这条直线的距离为1,即所以故例2.已知三条不同的直线,,共点,求的值。分析:由条件知为某一元方程的根,于是想法构造出这个一元方程,然后用韦达定理求值。解:设(m,n)是三条直线的交点,则可构造方程,即(*)由条件知,均为关于的一元三次方程(*)的根。由韦达定理知巧构造妙解题1.直接构造例1.求函数的值域。分析:由于可以看
6、作定点(2,3)与动点(-cosx,sinx)连线的斜率,故f(x)的值域即为斜率的最大、最小值。解:令,则表示单位圆表示连接定点P(2,3)与单位圆上任一点(,)所得直线的斜率。显然该直线与圆相切时,k取得最值,此时,圆心(0,0)到这条直线的距离为1,即所以故例2.已知三条不同的直线,,共点,求的值。分析:由条件知为某一元方程的根,于是想法构造出这个一元方程,然后用韦达定理求值。解:设(m,n)是三条直线的交点,则可构造方程,即(*)由条件知,均为关于的一元三次方程(*)的根。由韦达定理知巧构造妙解题1.直接构造例1.求函数的值域。分析:由于可以看作定点(2,
7、3)与动点(-cosx,sinx)连线的斜率,故f(x)的值域即为斜率的最大、最小值。解:令,则表示单位圆表示连接定点P(2,3)与单位圆上任一点(,)所得直线的斜率。显然该直线与圆相切时,k取得最值,此时,圆心(0,0)到这条直线的距离为1,即所以故例2.已知三条不同的直线,,共点,求的值。分析:由条件知为某一元方程的根,于是想法构造出这个一元方程,然后用韦达定理求值。解:设(m,n)是三条直线的交点,则可构造方程,即(*)由条件知,均为关于的一元三次方程(*)的根。由韦达定理知巧构造妙解题1.直接构造例1.求函数的值域。分析:由于可以看作定点(2,3)与动点(
8、-cosx
此文档下载收益归作者所有