汽车设计之离合器的设计与计算

汽车设计之离合器的设计与计算

ID:14892735

大小:159.00 KB

页数:9页

时间:2018-07-30

汽车设计之离合器的设计与计算_第1页
汽车设计之离合器的设计与计算_第2页
汽车设计之离合器的设计与计算_第3页
汽车设计之离合器的设计与计算_第4页
汽车设计之离合器的设计与计算_第5页
资源描述:

《汽车设计之离合器的设计与计算》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、第四节离合器的设计与计算一、离合器基本参数的优化设计离合器要确定离合器的性能参数和尺寸参数,这些参数的变化影响离合器的结构尺寸和工作性能。1.设计变量后备系数夕可由式(2-1)和式(2-5)确定,可以看出β取决于离合器工作压力F和离合器的主要尺寸参数D和d。单位压力β。可由式(2—2)确定,p0也取决于F和D及d。因此,离合器基本参数的优化设计变量选为2.目标函数离合器基本参数优化设计追求的目标是在保证离合器性能要求条件下,使其结构尺寸尽可能小,即目标函数为3.约束条件1)摩擦片的外径D(mm)的选取应使最大圆周速度VD不超过65—7

2、0m/s,即(2-7)式中,VD为摩擦片最大圆周速度(m/s);nemax为发动机最高转速(r/min)。2)摩擦片的内外径比c应在0.53~0.70范围内,即0.53≤c≤0.703)为保证离合器可靠传递转矩,并防止传动系过载,不同车型的β值应在一定范围内,最大范围β为1.2~4.0,即1.2≤β≤4.04)为了保证扭转减振器的安装,摩擦片内径d必须大于减振器弹簧位置直径2Ro约50mm(图2—15),即d>2Ro+505)为反映离合器传递转矩并保护过载的能力,单位摩擦面积传递的转矩应小于其许用值,即(2-8)式中,Tco为单位摩擦

3、面积传递的转矩(N·m/mm2);[TC0]为其允许值(N·m/mm2),按表2—1选取。表2—1单位摩擦面积传递转矩的许用值(N·m/mm2)离合器规格D/mm<210>210--250>250—325>325[Tco]X10—90.280.300.350.406)为降低离合器滑磨时的热负荷,防止摩擦片损伤,单位压力p。对于不同车型,根据所用的摩擦材料在一定范围内选取,最大范围p。为0.10—1.50MPa,即0.10MPa≤po≤1.50MPa7)为了减少汽车起步过程中离合器的滑磨,防止摩擦片表面温度过高而发生烧伤,每一次接合的单

4、位摩擦面积滑磨功应小于其许用值,即(2-9)式中,ω为单位摩擦面积滑磨功(J/mm2);[ω]为其许用值(J/mm2),对于轿车:[ω]=0.40J/mm2,对于轻型货车:[ω]=0.33J/mm2,对于重型货车:[ω]=0.25J/mm2;W为汽车起步时离合器接合一次所产生的总滑磨功(J),可根据下式计算(2-10)式中,ma为汽车总质量(kg);rr为轮胎滚动半径(m);ig为起步时所用变速器挡位的传动比;i0为主减速器传动比;ne为发动机转速(r/min),计算时轿车取2000r/min,货车取1500r/min。二、膜片弹簧的

5、载荷变形特性假设膜片弹簧在承载过程中,其子午断面刚性地绕此断面上的某中性点O转动(图2—9)。通过支承环和压盘加在膜片弹簧上的载荷Fl集中在支承点处,加载点间的相对轴向变形为λ1,(图2—10b),则有关系式(2-11)式中,正为材料的弹性模量,对于钢:E=2.1X105MPa;μ为材料的泊松比,对于钢:μ=0.3;H为膜片弹簧自由状态下碟簧部分的内截锥高度;h为膜片弹簧钢板厚度;R、r分别为自由状态下碟簧部分大、小端半径;R1、r1分别为压盘加载点和支承环加载点半径。离合器分离时,膜片弹簧的加载点发生变化,见图2—10c。设分离轴承

6、对分离指端所加载荷为F2,相应作用点变形为λ2,另外,在分离与压紧状态下,只要膜片弹簧变形到相同的位置,其子午断面从自由状态也转过相同的转角,则有如下关系图2-9子午断面绕中性点的转动(2-12)(2-13)式中,门为分离轴承与分离指的接触半径。图2-10膜片弹簧在不同工作状态时的变形a)自由状态b)压紧状态c)分离状态将式(2—12)和式(2—13)代人式(2—11),即可求得F2与入2的关系式。同样将式(2—12)和式(2—13)分别代入式(2—11),也可分别得到Fl与入2和F2与入1的关系式。如果不计分离指在F2作用下的弯曲变

7、形,则分离轴承推分离指的移动行程入2f(图2—10c)为(2-14)式中,入1f为压盘的分离行程(图2—10b、c)。三、膜片弹簧的强度校核由前面假设可知,子午断面在中性点O处沿圆周方向的切向应变为零,故该点的切向应力为零,O点以外的点均存在切向应变和切向应力。建立如图2—9所示的坐标系,则断面上任意点(x,y)的切向应力σt为(2-15)式中,为自由状态时碟簧部分的圆锥底角;为从自由状态起,碟簧子午断面的转角;为中性点半径,e=(R—r)/In(R/r)。由式(2—15)知,当一定时,一定的切向应力在工xOy坐标系中呈线性分布,当=

8、0时有(2-16)因(—/2)很小,(—/2)≈tan(—/2),则式(2—16)表明对于一定的,零应力分布在过O点而与x轴成(—/2)角的直线上(图2—11)。实际上,当x=—e时,无论为何值,均存在)y=—(—/2)

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。