高中数学备课精选 3.2《均值不等式》教案 新人教b版必修5

高中数学备课精选 3.2《均值不等式》教案 新人教b版必修5

ID:14871166

大小:113.50 KB

页数:3页

时间:2018-07-30

高中数学备课精选 3.2《均值不等式》教案 新人教b版必修5_第1页
高中数学备课精选 3.2《均值不等式》教案 新人教b版必修5_第2页
高中数学备课精选 3.2《均值不等式》教案 新人教b版必修5_第3页
资源描述:

《高中数学备课精选 3.2《均值不等式》教案 新人教b版必修5》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、【中学数学教案】3.2均值不等式教案教学目标:推导并掌握两个正数的算术平均数不小于它们的几何平均数这个重要定理.利用均值定理求极值.了解均值不等式在证明不等式中的简单应用教学重点:推导并掌握两个正数的算术平均数不小于它们的几何平均数这个重要定理利用均值定理求极值教学过程一、复习:1、复习不等式的性质定理及其推论1:a>bbb,b>ca>c(或cba+c>b+c(或aca>c-b(移项法则)(2):a>b,c>da+c>b+d4、若a>b,且c>0,那么ac>bc;若a>b,且c<0

2、,那么acb>0,且c>d>0,则ac>bd(2)、若a>b>0,则an>bn(n∈,且n>1)(3)、若a>b>0,则(n∈,且n>1)-3-2、定理变式:如果a,b∈R,那么a2+b2≥2ab(当且仅当a=b时,等号成立)3、均值定理:如果a,b是正数,那么证明:∵,即显然,当且仅当说明:ⅰ)我们称的算术平均数,称的几何平均数,因而,此定理又可叙述为:两个正数的算术平均数不小于它们的几何平均数ⅱ)成立的条件是不同的:前者只要求a,b都是实数,而后者要求a,b都是正数ⅲ)“当且仅当”的含义是等价3.均值定理的几何意义是“半径不小于半弦”以长为

3、a+b的线段为直径作圆,在直径AB上取点C,使AC=a,CB=b过点C作垂直于直径AB的弦DD′,那么,即这个圆的半径为,显然,它不小于CD,即,其中当且仅当点C与圆心重合;即a=b时,等号成立应用例题:例1、已知a、b、c∈R,求证:不等式的左边是根式,而右边是整式,应设法通过适当的放缩变换将左边各根式的被开方式转化为完全平方式,再利用不等式的性质证得原命题。例2、若,则本题若用"求差法"证明,计算量较大,难以获得成功,注意到a,b,c∈R+,从结论的特点出发,均值不等式,问题是不难获证的。-3-例3、已知为两两不相等的实数,求证:证明:∵以上三式相加:∴例4、已

4、知a,b,c,d都是正数,求证:分析:此题要求学生注意与均值不等式定理的“形”上发生联系,从而正确运用,同时加强对均值不等式定理的条件的认识证明:∵a,b,c,d都是正数,∴ab>0,cd>0,ac>0,bd>0得由不等式的性质定理4的推论1,得即归纳小结定理:如果a,b是正数,那么2、利用均值定理求最值应注意:“正”,“定”,“等”,灵活的配凑是解题的关键。-3-

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。