合作交流 尽显数学之美.doc

合作交流 尽显数学之美.doc

ID:14865045

大小:24.50 KB

页数:2页

时间:2018-07-30

合作交流 尽显数学之美.doc_第1页
合作交流 尽显数学之美.doc_第2页
资源描述:

《合作交流 尽显数学之美.doc》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、合作交流尽显数学之美新课标指出:“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实验、自主探索与合作交流是学生学习数学的重要方式。学会与人合作,并能与他人交流思想。”新课标重视培养学生数学交流等学习意识。因此,在教学中加强数学课堂交流,有助于促进学生的有效学习。  一、注重交流对象的全面性  教师是数学学习的组织者、引导者和合作者,应当努力创设交流环境,使学生有机会在学习中全面获取各种信息,并保证每一位学生都能把自己的体验传达给他的学习伙伴。  1.学生之间的自由交流  数学课堂应该让学生之间自由开展交流的良好氛围,能让同桌、同一个学习小组乃至全班学生之间都可以

2、随时进行交流。只有自由交流才能在灵感突现时与同伴分享,并给同学以启发,产生真正有价值的发现。如认识减法时,学生根据情景图“5位小朋友正在浇花,离开了2位小朋友”,列出算式5-2=3。有位小朋友对同桌小声嘀咕,他说:“我看到图中有5朵花,其中3朵红花和2朵黄花,也是5-2=3。”受他的启发,老师进一步引导学生:“还可以怎么看,也是5-2=3?”小朋友们唧唧喳喳一番,居然说出了:“图中有5位小朋友,离开了2位女同学,剩下的就是3位男同学。”没有自由的交流,能有这样的发现吗?  2.师生之间的平等交流  在学习中教师应是学生最忠实的学习伙伴。教师要从居高临下的位置上走下

3、来,走到与学生平起平坐、平等交流的关系中来,用真挚的感情去滋润学生的心田,帮助学生克服心理障碍,增强学生学习的自信心,使学生在一种轻松、愉快的气氛中学习。只有创设融洽的情感氛围,才能充分调动他们学习的积极性和主动性,从而最大限度地提高学习效率。  3.学生和教材之间的双向交流  教材是学生学习时的一个范例,它能提供给学生很多的信息,但是学生与教材之间的交流也是双向的。在这样的双向交流中,学生发现问题、研究问题、解决问题的能力会得到充分的发展。如学习“年、月、日”时,关于平年、闰年的规律,学生希望知道的远不止教材介绍的内容,比如:为什么会有平年、闰年的变化?为什么公

4、历年份数是4的倍数一般是闰年?而公历年份数是整百数的又必须是400的倍数才是闰年?通过进一步阅读课外资料,学生明白以上问题之后,又有新的问题:公历年份数是400的倍数的年份一定是闰年吗?这是对教材和课外资料充分理解后的理性思考,是与教材双向交流后的成果,应该承认这也是一种创新。  二、加强交流形式的针对性  不同的问题就像不同的锁,不同的交流形式就像不同的钥匙。教师要引导学生针对不同的问题开展不同形式的交流,切实地提高课堂交流的效率。  1.围绕主题,展开研讨2  围绕某一个主题展开研讨,是数学课堂合作交流最主要的形式。研讨的范围视需要而定,同桌之间、若干人组成的

5、学习小组、全班之间都可以。这样的研讨有助于全体学生参与课堂学习,突出学生在学习中的主体地位,培养学生团结协作和活动交往的能力。如教学《分数的基本性质》时,教师揭示研讨主题:分数和除法有非常密切的联系,除法有商不变性质,分数有没有类似的性质呢?如果有,是什么?你能举一些例子来验证吗?围绕这一主题,学生开展的研讨活动非常成功,不仅根据已有的知识类推出比的基本性质,也举了许多的例子加以说明或验证,在轻松的氛围中获得了知识、能力、情感的三项丰收。这种灵活应变的、开放性的研讨顺应了学生的学习需求,极大地拓展了学生的思维空间,促进了学生的有效学习。  2.展示成果,共同评议 

6、 动手实践、自主探索作为重要的学习方式在学生的学习中必将得以广泛的应用,这样,学生就有大量的机会进行非常有个性化的实践、探索,并形成独特的发现,使思维碰撞产生创新的火花,获得积极的情感体验。如教学《加减法的一些简便计算》中,学完例1:264+98后尝试解决例2:361-197,出现了两种方法:①361-197=361-200-3=158②361-197=361-200+3=164。教师将两种方法都展示出来请同学们评议,在评议中领悟正确的思考方法,有助于培养学生健全的思维,促进学生的全面发展。  3.质疑问难,辩论实质  学起于思,思源于疑。质疑问难中合作交流是学习

7、的向导和动力。学生只有在不断发现问题、分析问题、解决问题的过程中,才能发展思维,培养能力,开拓智力。如教学《长方体的认识》时,学生通过探索、自学后交流,一位学生对长方体的长、宽、高的概念的理解是:把一个长方体摆在面前,竖的那条棱是高,水平左右方向的那条棱是长,水平前后方向的那条棱是宽。当即有学生质疑:照这样说法,如果将长方体斜着放置,该怎么确定长、宽、高呢?在教师的引导下,辩论开始了:支持前者的认为这样理解便于记忆,反对者认为长、宽、高与长方体的放置方法及棱的方向都没有关系,只要是相交于一个顶点的三条棱都可以看做是长、宽、高。两相对比,使学生的理解更能把握数学知识

8、的实质。 

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。