欢迎来到天天文库
浏览记录
ID:1486365
大小:193.63 KB
页数:5页
时间:2017-11-11
《lms与rls自适应滤波算法性能比较》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、应用技术研究LMS与RLS自适应滤波算法性能比较马文民【摘要】:介绍了自适应滤波器去除噪声的原理和从强噪声背景中采用自适应滤波提取有用信号的方法,并对最小均方(LMS,LeastMeanSquares)和递推最小二乘(RLS,RecursiveLeastSquares)两种基本自适应算法进行了算法原理、算法性能分析。计算机模拟仿真结果表明,这两种算法都能通过有效抑制各种干扰来提高强噪声背景中的信号。检测特性相比之下,RLS算法具有良好的收敛性能,除收敛速度快于LMS算法和NLMS算法以及稳定性强外,而且具有更高的起始收敛速率、更小的权噪声和更大的抑噪能力。【关键词】:自适应滤波;原理;算法;仿
2、真1作者简介:马文民男山东省济南圣泉集团股份有限公司工程师应用技术研究引言:自适应滤波是近30年以来发展起来的一种最佳滤波方法。它是在维纳滤波,kalman滤波等线性滤波基础上发展起来的一种最佳滤波方法。由于它具有更强的适应性和更优的滤波性能。从而在工程实际中,尤其在信息处理技术中得到广泛的应用。自适应滤波的研究对象是具有不确定的系统或信息过程。“不确定”是指所研究的处理信息过程及其环境的数学模型不是完全确定的。其中包含一些未知因数和随机因数。任何一个实际的信息过程都具有不同程度的不确定性,这些不确定性有时表现在过程内部,有时表现在过程外部。从过程内部来讲,描述研究对象即信息动态过程的数学模型
3、的结构和参数是我们事先不知道的。作为外部环境对信息过程的影响,可以等效地用扰动来表示,这些扰动通常是不可测的,它们可能是确定的,也可能是随机的。此外一些测量噪音也是以不同的途径影响信息过程。这些扰动和噪声的统计特性常常是未知的。面对这些客观存在的各种不确定性,如何综合处理信息过程,并使某一些指定的性能指标达到最优或近似最优,这就是自适应滤波所要解决的问题。在这几十年里,数字信号处理技术取得了飞速发展,特别是自适应信号处理技术以其计算简单、收敛速度快等许多优点而广泛被使用。它通过使内部参数的最优化来自动改变其特性。自适应滤波算法在统计信号处理的许多应用中都是非常重要的。在工程实际中,经常会遇到强
4、噪声背景中的微弱信号检测问题。例如在超声波无损检测领域,因传输介质的不均匀等因素导致有用信号与高噪声信号迭加在一起。被埋藏在强背景噪声中的有用信号通常微弱而不稳定,而背景噪声往往又是非平稳的和随时间变化的,此时很难用传统方法来解决噪声背景中的信号提取问题。自适应噪声抵消技术是一种有效降噪的方法,当系统能提供良好的参考信号时,可获得很好的提取效果。与传统的平均迭加方法相比采用自适应平均处理方法还能降低样本数量。1自适应滤波器的基本原理所谓的自适应滤波,就是利用前一时刻以获得的滤波器参数的结果,自动的调节现时刻的滤波器参数,以适应信号和噪声未知的或随时间变化的统计特性,从而实现最优滤波。自适应滤波
5、器实质上就是一种能调节其自身传输特性以达到最优的维纳滤波器。自适应滤波器不需要关于输入信号的先验知识,计算量小,特别适用于实时处理。由于无法预先知道信号和噪声的特性或者它们是随时间变化的,仅仅用FIR和IIR两种具有固定滤波系数的滤波器无法实现最优滤波。在这种情况下,必须设计自适应滤波器,以跟踪信号和噪声的变化。自适应滤波器的特性变化是由自适应算法通过调整滤波器系数来实现的。一般而言,自适应滤波器由两部分组成,一是滤波器结构,二是调整滤波器系数的自适应算法。5应用技术研究自适应噪声抵消系统的核心是自适应滤波器,自适应算法对其参数进行控制,以实现最佳滤波。不同的自适应滤波器算法,具有不同的收敛速
6、度、稳态失调和算法复杂度。根据自适应算法是否与滤波器输出有关,可将其分成开环算法和闭环算法两类。自适应噪声抵消器中利用了输出反馈,属于闭环算法。其优点是能在滤波器输入变化时保持最佳的输出,而且还能在某种程度上补偿滤波器元件参数的变化和误差以及运算误差。但其缺点是存在稳定性问题以及收敛速度不高。所以探讨如何提高收敛速度、增强稳定性以满足信号处理的高效性、实时性,一直是人们研究的重点和热点。本文基于自适应噪声抵消对比研究了两类基本的自适应算法,并对它们在分离周期信号和随机噪声中呈现的滤波性能进行了分析。计算机仿真结果表明,RLS算法从背景噪声中提取有用信号的滤波性能明显优于LMS算法。2算法原理图
7、1自适应滤波器原理框图图1给出了用自适应噪声抵消技术来解决噪声背景中的信号提取问题的基本原理。主输入端接收从信号源发来的信号s但是受到噪声源的干扰收到噪声vo。参考输入端的参考信号为vi是一个与有用信号s无关但与vo相关的噪声信号。主输入中含有待抵消的加性噪声,参考输入对准主输入中的噪声vo。利用两输入噪声的相关性和信号与噪声的独立性,使参考输入通过自适应滤波器与主输入中噪声分量逼近并相减,输出误
此文档下载收益归作者所有