微 积 分 发 展 简 史

微 积 分 发 展 简 史

ID:14859614

大小:47.50 KB

页数:16页

时间:2018-07-30

微 积 分 发 展 简 史_第1页
微 积 分 发 展 简 史_第2页
微 积 分 发 展 简 史_第3页
微 积 分 发 展 简 史_第4页
微 积 分 发 展 简 史_第5页
资源描述:

《微 积 分 发 展 简 史》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、微积分发展简史微积分发展简史一.微积分思想的萌芽微积分的思想萌芽,部分可以追溯到古代。在古代希腊、中国和印度数学家的著作中,已不乏用朴素的极限思想,即无穷小过程计算特别形状的面积、体积和曲线长的例子。在中国,公元前5世纪,战国时期名家的代表作《庄子?天下篇》中记载了惠施的一段话:“一尺之棰,日取其半,万世不竭”,是我国较早出现的极限思想。但把极限思想运用于实践,即利用极限思想解决实际问题的典范却是魏晋时期的数学家刘徽。他的“割圆术”开创了圆周率研究的新纪元。刘徽首先考虑圆内接正六边形面积,接着是正十二边形面积,然后依次加倍边数

2、,则正多边形面积愈来愈接近圆面积。用他的话说,就是:“割之弥细,所失弥少。割之又割,以至于不可割,则与圆合体,而无所失矣。”按照这种思想,他从圆的内接正六边形面积一直算到内接正192边形面积,得到圆周率的近似值3.14。大约两个世纪之后,南北朝时期的著名科学家祖冲之(公元429-500年)祖恒父子推进和发展了刘徽的数学思想,首先算出了圆周率介于3.1415926与3.1415927之间,这是我国古代最伟大的成就之一。欧洲古希腊时期也有极限思想,并用极限方法解决了许多实际问题。阿基米德(Archimedes,B.C287-B.C

3、212)借助于“穷竭法”解决了一系列几何图形的面积、体积计算问题。这种方法体现了近代积分法的基本思想,是定积分概念的雏形。与积分学相比,微分学研究的例子相对少多了。刺激微分学发展的主要科学问题是求曲线的切线、求瞬时变化率以及求函数的极大值极小值等问题。阿基米德、阿波罗尼奥斯(Apollonius,c.BC262-c.BC190)等均曾作过尝试,但他们都是基于静态的观点。古代与中世纪的中国学者在天文历法研究中也曾涉及到天体运动的不均匀性及有关的极大、极小值问题,但多以惯用的数值手段(即有限差分计算)来处理,从而回避了连续变化率。

4、二.十七世纪微积分的酝酿微积分思想真正的迅速发展与成熟是在16世纪以后。1400年至1600年的欧洲文艺复兴,使得整个欧洲全面觉醒。一方面,社会生产力迅速提高,科学和技术得到迅猛发展;另一方面,社会需求的急需增长,也为科学研究提出了大量的问题。这一时期,对运动与变化的研究已变成自然科学的中心问题,以常量为主要研究对象的古典数学已不能满足要求,科学家们开始由对以常量为主要研究对象的研究转移到以变量为主要研究对象的研究上来,自然科学开始迈入综合与突破的阶段。微积分的创立,首先是为了处理十七世纪的一系列主要的科学问题。有四种主要类型

5、的科学问题:第一类是,已知物体的移动的距离表为时间的函数的公式,求物体在任意时刻的速度和加速度使瞬时变化率问题的研究成为当务之急;第二类是,望远镜的光程设计使得求曲线的切线问题变得不可回避;第三类是,确定炮弹的最大射程以及求行星离开太阳的最远和最近距离等涉及的函数极大值、极小值问题也急待解决;第四类问题是求行星沿轨道运动的路程、行星矢径扫过的面积以及物体重心与引力等,又使面积、体积、曲线长、重心和引力等微积分基本问题的计算被重新研究。在17世纪上半叶,几乎所有的科学大师都致力于寻求解决这些问题的数学工具。这里我们只简单介绍在微

6、积分酝酿阶段最具代表性的几位科学大师的工作。开普勒(J.Kepler,1571-1630)与无限小元法。德国天文学家、数学家开普勒在1615年发表的《测量酒桶的新立体几何》中,论述了其利用无限小元求旋转体体积的积分法。他的无限小元法的要旨是用无数个同维无限小元素之和来确定曲边形的面积和旋转体的体积,如他认为球的体积是无数个顶点在球心底面在球上的小圆锥的体积的和。卡瓦列里(B.Cavalieri,1598-1647)与不可分量法。意大利数学家卡瓦列里在其著作《用新方法推进的连续的不可分量的几何学》(1635)中系统地发展了不可分

7、量法。他认为点运动形成线,线运动形成面,体则是由无穷多个平行平面组成,并分别把这些元素叫做线、面和体的不可分量。他建立了一条关于这些不可分量的一般原理(后称卡瓦列里原理,即是我国的祖氏原理):如果在等高处的横截面有相同的面积,两个有同高的立体有相同的体积。利用这个原理他解决了开普勒的旋转体体积的问题。巴罗(I.Barrow,1630-1677)与“微分三角形”。巴罗是英国的数学家,在1669年出版的著作《几何讲义》中,他利用微分三角形(也称特征三角形)求出了曲线的斜率。他的方法的实质是把切线看作割线的极限位置,并利用忽略高阶无

8、限小来取极限。巴罗是牛顿的老师,英国剑桥大学的第一任“卢卡斯数学教授”,也是英国皇家学会的首批会员。当他发现和认识到牛顿的杰出才能时,便于1669年辞去卢卡斯教授的职位,举荐自己的学生----当时才27岁的牛顿来担任。巴罗让贤已成为科学史上的佳话。笛卡儿(R.Descarte

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。