poincare conjectures-cao zhu

poincare conjectures-cao zhu

ID:14696380

大小:2.11 MB

页数:328页

时间:2018-07-30

poincare conjectures-cao zhu_第页
预览图正在加载中,预计需要20秒,请耐心等待
资源描述:

《poincare conjectures-cao zhu》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、ASIANJ.MATH.c2006InternationalPressVol.10,No.2,pp.165–492,June2006001ACOMPLETEPROOFOFTHEPOINCAREAND´GEOMETRIZATIONCONJECTURES–APPLICATIONOFTHEHAMILTON-PERELMANTHEORYOFTHERICCIFLOW∗HUAI-DONGCAO†ANDXI-PINGZHU‡Abstract.Inthispaper,wegiveacompleteproofofthePoincar´ea

2、ndthegeometrizationconjectures.Thisworkdependsontheaccumulativeworksofmanygeometricanalystsinthepastthirtyyears.ThisproofshouldbeconsideredasthecrowningachievementoftheHamilton-PerelmantheoryofRicciflow.Keywords.Ricciflow,Ricciflowwithsurgery,Hamilton-Perelmantheory

3、,Poincar´eConjec-ture,geometrizationof3-manifoldsAMSsubjectclassifications.53C21,53C44CONTENTSIntroduction1671EvolutionEquations1721.1TheRicciFlow...............................1721.2Short-timeExistenceandUniqueness...................1771.3EvolutionofCurvatures...

4、.......................1831.4DerivativeEstimates............................1901.5VariationalStructureandDynamicProperty..............1992MaximumPrincipleandLi-Yau-HamiltonInequalities2102.1PreservingPositiveCurvature.......................2102.2StrongMaximumPrin

5、ciple........................2132.3AdvancedMaximumPrincipleforTensors................2172.4Hamilton-IveyCurvaturePinchingEstimate...............2232.5Li-Yau-HamiltonEstimates........................2262.6Perelman’sEstimateforConjugateHeatEquations...........2343P

6、erelman’sReducedVolume2393.1RiemannianFormalisminPotentiallyInfiniteDimensions.......2393.2ComparisonTheoremsforPerelman’sReducedVolume.........2433.3NoLocalCollapsingTheoremI......................2553.4NoLocalCollapsingTheoremII.....................2614Formationo

7、fSingularities2674.1CheegerTypeCompactness........................2674.2InjectivityRadiusEstimates........................2864.3LimitingSingularityModels........................2914.4RicciSolitons................................302∗ReceivedDecember12,2005;accepte

8、dforpublicationApril16,2006.†DepartmentofMathematics,LehighUniversity,Bethlehem,PA18015,USA(huc2@lehigh.edu).‡DepartmentofMathematics,ZhongshanUniversity,Guang

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。