topology course lecture notes - a. mccluskey, b. mcmaster

topology course lecture notes - a. mccluskey, b. mcmaster

ID:14687428

大小:255.86 KB

页数:51页

时间:2018-07-29

topology course lecture notes - a. mccluskey, b. mcmaster_第1页
topology course lecture notes - a. mccluskey, b. mcmaster_第2页
topology course lecture notes - a. mccluskey, b. mcmaster_第3页
topology course lecture notes - a. mccluskey, b. mcmaster_第4页
topology course lecture notes - a. mccluskey, b. mcmaster_第5页
资源描述:

《topology course lecture notes - a. mccluskey, b. mcmaster》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、TopologyCourseLectureNotesAislingMcCluskeyandBrianMcMasterAugust1997Chapter1FundamentalConceptsInthestudyofmetricspaces,weobservedthat:(i)manyoftheconceptscanbedescribedpurelyintermsofopensets,(ii)open-setdescriptionsaresometimessimplerthanmetricdescriptions,e.g.continuity,(iii)manyresultsaboutthe

2、seconceptscanbeprovedusingonlythebasicpropertiesofopensets(namely,thatboththeemptysetandtheun-derlyingsetXareopen,thattheintersectionofanytwoopensetsisagainopenandthattheunionofarbitrarilymanyopensetsisopen).Thispromptsthequestion:Howfarwouldwegetifwestartedwithacollec-tionofsubsetspossessingthese

3、above-mentionedpropertiesandproceededtodefineeverythingintermsofthem?1.1DescribingTopologicalSpacesWenotedabovethatmanyimportantresultsinmetricspacescanbeprovedusingonlythebasicpropertiesofopensetsthat²theemptysetandunderlyingsetXarebothopen,²theintersectionofanytwoopensetsisopen,and²unionsofarbitr

4、arilymanyopensetsareopen.1WewillcallanycollectionofsetsonXsatisfyingthesepropertiesatopology.Inthefollowingsection,wealsoseektogivealternativewaysofdescribingthisimportantcollectionofsets.1.1.1DefiningTopologicalSpacesDefinition1.1Atopologicalspaceisapair(X;T)consistingofasetXandafamilyTofsubsetsofX

5、satisfyingthefollowingconditions:(T1);2TandX2T(T2)Tisclosedunderarbitraryunion(T3)Tisclosedunderfiniteintersection.ThesetXiscalledaspace,theelementsofXarecalledpointsofthespaceandthesubsetsofXbelongingtoTarecalledopeninthespace;thefamilyTofopensubsetsofXisalsocalledatopologyforX.Examples(i)Anymetri

6、cspace(X;d)isatopologicalspacewhereTd,thetopologyforXinducedbythemetricd,isdefinedbyagreeingthatGshallbedeclaredasopenwhenevereachxinGiscontainedinanopenballentirelyinG,i.e.;½GµXisopenin(X;Td),8x2G;9rx>0suchthatx2Brx(x)µG:(ii)Thefollowingisaspecialcaseof(i),above.LetRbethesetofrealnumbersandletIbet

7、heusual(metric)topologydefinedbyagreeingthat;½GµXisopenin(R;I)(alternatively,I-open),8x2G;9rx>0suchthat(x¡rx;x+rx)½G:(iii)DefineT0=f;;XgforanysetX—knownasthetrivialoranti-discretetopology.(iv)DefineD=fGµX:GµXg—known

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。