资源描述:
《topology course lecture notes - a. mccluskey, b. mcmaster》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、TopologyCourseLectureNotesAislingMcCluskeyandBrianMcMasterAugust1997Chapter1FundamentalConceptsInthestudyofmetricspaces,weobservedthat:(i)manyoftheconceptscanbedescribedpurelyintermsofopensets,(ii)open-setdescriptionsaresometimessimplerthanmetricdescr
2、iptions,e.g.continuity,(iii)manyresultsabouttheseconceptscanbeprovedusingonlythebasicpropertiesofopensets(namely,thatboththeemptysetandtheun-derlyingsetXareopen,thattheintersectionofanytwoopensetsisagainopenandthattheunionofarbitrarilymanyopensetsisop
3、en).Thispromptsthequestion:Howfarwouldwegetifwestartedwithacollec-tionofsubsetspossessingtheseabove-mentionedpropertiesandproceededtodefineeverythingintermsofthem?1.1DescribingTopologicalSpacesWenotedabovethatmanyimportantresultsinmetricspacescanbeprov
4、edusingonlythebasicpropertiesofopensetsthat²theemptysetandunderlyingsetXarebothopen,²theintersectionofanytwoopensetsisopen,and²unionsofarbitrarilymanyopensetsareopen.1WewillcallanycollectionofsetsonXsatisfyingthesepropertiesatopology.Inthefollowingsec
5、tion,wealsoseektogivealternativewaysofdescribingthisimportantcollectionofsets.1.1.1DefiningTopologicalSpacesDefinition1.1Atopologicalspaceisapair(X;T)consistingofasetXandafamilyTofsubsetsofXsatisfyingthefollowingconditions:(T1);2TandX2T(T2)Tisclosedunde
6、rarbitraryunion(T3)Tisclosedunderfiniteintersection.ThesetXiscalledaspace,theelementsofXarecalledpointsofthespaceandthesubsetsofXbelongingtoTarecalledopeninthespace;thefamilyTofopensubsetsofXisalsocalledatopologyforX.Examples(i)Anymetricspace(X;d)isato
7、pologicalspacewhereTd,thetopologyforXinducedbythemetricd,isdefinedbyagreeingthatGshallbedeclaredasopenwhenevereachxinGiscontainedinanopenballentirelyinG,i.e.;½GµXisopenin(X;Td),8x2G;9rx>0suchthatx2Brx(x)µG:(ii)Thefollowingisaspecialcaseof(i),above.LetR
8、bethesetofrealnumbersandletIbetheusual(metric)topologydefinedbyagreeingthat;½GµXisopenin(R;I)(alternatively,I-open),8x2G;9rx>0suchthat(x¡rx;x+rx)½G:(iii)DefineT0=f;;XgforanysetX—knownasthetrivialoranti-discretetopology.(iv)DefineD=fGµX:GµXg—known