人工神经网络在采煤技术上的应用

人工神经网络在采煤技术上的应用

ID:14672242

大小:26.00 KB

页数:5页

时间:2018-07-29

人工神经网络在采煤技术上的应用_第1页
人工神经网络在采煤技术上的应用_第2页
人工神经网络在采煤技术上的应用_第3页
人工神经网络在采煤技术上的应用_第4页
人工神经网络在采煤技术上的应用_第5页
资源描述:

《人工神经网络在采煤技术上的应用》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、人工神经网络在采煤技术上的应用  摘要:随着现代采煤技术不断进步,与其相对应的采煤自动化水平也有所提高。煤炭自动化综放工作面可以有效提高煤炭的产量,在减轻一线劳动工人工作负担的同时也提高了采煤效率。本文针对我国煤矿综放工作面和采煤工作中的一些问题,介绍了一种符合实际情况的综放工作面,能够提供相应的智能控制,使用最为先进的人工神经网络技术可以对综放工作面的生产进行有效控制。还简单介绍了人工神经网络在采煤技术上的应用。  关键词:人工神经网络;自动化;采煤技术;综放工作面  随着我国国民经济总量的增大,煤炭能源的消耗也是越来与而大,同时也对煤矿的开采提出

2、了更高的要求。近年来,国家对煤矿安全越来越重视,管理也更加严格,很多不合安全规范的小型煤矿被关停。想在现有环境下提高采煤量,就必须加大科技方面的投入,采用最先进的自动化设备技术,宗放自动化采煤是当前世界上最为先进的采煤技术,是提高采煤生产效率的关键技术之一。人工神经系统可以较好的辅助综放工作面的工作,可对综放工作面进行控制生产,对提高采煤效率有着极为重要的意义。  一、人工神经网络的简单介绍  人工神经网络是一种非线性、交叉的科学,它通过计算机系统对生物神经信息进行模拟来解决实际工作中的问题,属于非线性、交叉的科学。经过近些年的发展,人工神经网落技术

3、在自然科学、社会科学等各个领域的应用已经得到广泛应用。人工神经网络的广泛应用自然也推动了人工神经网路的研究,现在出现的具有不同功能作用的网络结构和算法系统,就是近年来研究的成果,人工神经网络的理论系统也日趋成熟,适用范围也越来越广。  通过模拟人体神经系统信号传输原理,人工神经网络的各个节点也与人体内的神经元相似,能够通过连接权值进行非常紧密的联系。在实际应用中,如果神经元的输出大大超过了网络内部神经元阀值的时候,这个人工神经网络就会输出信号,这个信号也就是成为了下个神经元输入的信号。人工神经网络是模拟人的神经系统创建的,自然与人的神经系统很相似,要

4、通过不断的应用、训练才可以保持较为良好的状态,在实际操作中,人工神经网络的性能是由各个节点的激活函数、网络的拓扑结构以及网络的训练方法决定的。较为常用的BP算法就是通过对网络连接权值的不断调整来达到训练人工神经网络的目的。  二、人工神经网络的相关建模方法  就现有研究来看,人工神经网络的建模方法主要包括模糊建模和混合建模,这些具体而有效的建模方法给采煤综放工作面生产过程自动化提供了较为科学的理论指导,是提高采煤效率和降低采煤工人劳动强度的有效举措之一,以下是对人工神经网络建模的具体介绍。  (一)人工神经网络的模糊建模方法  在煤矿的实际工作中,传

5、统的数学建模方法有其局限性,不能适应较为复杂的问题,严重影响了煤矿的生产效率。模糊理论正是在这种大背景下出现的,它通过有效的实验方法,将实验数据总结汇总,将实验汇总的数据作为模糊规则,然后依据相关模糊理论进行实际的人工神经网络建模。这种建模方法的优势是能够较为快速的预测出新输入数据接下来会输出的结果。煤矿在应用模糊建模方法后,对于生产过程的预算也就更为准确,便于企业做出相关决策。整个模糊建模方法主要由三个部分组成,既模糊化、推理机制、解模糊,这是模糊建模的一个有机整体,是这种建模方式的核心价值所在。  (二)人工神经网络的混合建模方法  除了模糊建模

6、方法之外,人工神经网络还有一种混合建模方法,这种建模方法是依托智能算法的进步而出现的,现已广泛应用于煤矿生产。近年来,为了适应人工神经网络的发展,包括粒子群算法和遗传算法在内的智能算法取得了较大的发展,这种建模方可以对实际工作中比较复杂的参数进行优化处理,进而提高生产效率。  1.粒子群算法建模  粒子群建模简单来说就是利用较为成熟的计算机语言的算法对相关生物的群体行为进行模仿,然后进行建模,在具体操作中,粒子群算法建模要避免碰撞而飞离最近的个体、飞向目标、飞向群体中心,这也被称为粒子群建模方法的三大原则。  2.遗传算法  遗传算法就是将计算机技术

7、和进化论联合运用于人工神经网络建模。在实际工作中,遗传算法应用了当前最为先进的编码技术和遗传操来做铺垫。在Holland体系中,GA就是一种较为简单的遗传算法,各种不同形式的二进制串就是其具体的操作对象。但在煤矿工作中,如果是要通过参数来进行问题分析,遗传算法的研究对象就可以是一个参数组,在这个参数组中,遗传算法具体是通过这个参数组的适应度来表现其好坏情况。通常情况下,遗传算法在具体操作中就是通过对基础的参数群进行有效分析,其选择个体是依据这个个体的适应值比例,然后通过交叉和变异进的方法诞生下一个组种群,这个过程可以持续下去,直到满足生产需求的参数值

8、出现为止。遗传算法也是一种优选的方法,它将遗传算法的优点和人工神经网络的特点进行了有机结合,通过遗传算法可以

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。