欢迎来到天天文库
浏览记录
ID:14608264
大小:404.50 KB
页数:13页
时间:2018-07-29
《2018版高中数学人教a版)选修1-1同步教师用书:第三章3.1.3导数的几何意义》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、3.1.3 导数的几何意义1.理解导数的几何意义会求曲线上某点处的切线方程.(重点)2.理解导函数的概念、会求导函数.(重点)3.理解在某点处与过某点的切线方程的区别.(难点、易混点)[基础·初探]教材整理1 导数的几何意义阅读教材P76导数的几何意义~P77例2以上部分,完成下列问题.导数的几何意义1.设点P(x0,f(x0)),Pn(xn,f(xn))是曲线y=f(x)上不同的点,当点Pn(xn,f(xn))(n=1,2,3,4…)沿着曲线f(x)趋近于点P(x0,f(x0))时,割线PPn趋近于确定的位置,这个确定位置的直线PT称为
2、过点P的切线,且PT的斜率k==f′(x0).2.函数y=f(x)在点x0处的导数f′(x0)的几何意义是曲线y=f(x)在点P(x0,f(x0))处切线的斜率,在点P的切线方程为y-f(x0)=f′(x0)(x-x0).判断(正确的打“√”,错误的打“×”)(1)直线与曲线相切则直线与已知曲线只有一个公共点.( )(2)过曲线上的一点作曲线的切线,这点一定是切点.( )(3)若f′(x0)不存在,则曲线y=f(x)在点(x0,f(x0))处无切线.( )【答案】 (1)× (2)× (3)×教材整理2 导函数的概念阅读教材P79导
3、函数部分,完成下列问题.导函数的概念从求函数f(x)在x=x0处导数的过程看到,当x=x0时,f′(x0)是一个确定的数;当x变化时,f′(x)是x的一个函数,称为f(x)的导函数,即f′(x)=y′=.判断(正确的打“√”,错误的打“×”)(1)函数f(x)在点x0处的导数f′(x0)与导函数f′(x)之间是有区别的.( )(2)导函数f′(x)的定义域与函数f(x)的定义域相同.( )(3)函数f(x)=0没有导函数.( )【答案】 (1)√ (2)× (3)×[小组合作型]导数几何意义的应用 如图313,点A(2,1),B(3
4、,0),E(x,0)(x≥0),过点E作OB的垂线l.记△AOB在直线l左侧部分的面积为S,则函数S=f(x)的图象为下图中的( )图313【自主解答】 函数的定义域为(0,+∞),当x∈[0,2]时,在单位长度变化量Δx内面积变化量ΔS越来越大,即斜率f′(x)在[0,2]内越来越大,因此,函数S=f(x)的图象是上升的,且图象是下凸的;当x∈(2,3)时,在单位长度变化量Δx内面积变化量ΔS越来越小,即斜率f′(x)在(2,3)内越来越小,因此,函数S=f(x)的图象是上升的,且图象是上凸的;当x∈[3,+∞)时,在单位长度变化量Δ
5、x内面积变化量ΔS为0,即斜率f′(x)在[3,+∞)内为常数0,此时,函数图象为平行于x轴的射线.故选D.【答案】 D函数在每一点处的切线斜率的变化情况反映函数在相应点处的变化情况,由切线的倾斜程度,可以判断出函数升降的快慢.因此,研究复杂的函数问题,可以考虑通过研究其切线来了解函数的性质.[再练一题]1.函数y=f(x)的图象如图314所示,根据图象比较曲线y=f(x)在x=x1,x=x2附近的变化情况.图314【解】 当x=x1时,曲线y=f(x)在点(x1,f(x1))处的切线l1的斜率f′(x1)>0,因此在x=x1附近曲线呈上
6、升趋势,即函数y=f(x)在x=x1附近单调递增.同理,函数y=f(x)在x=x2附近单调递增,但是,直线l1的倾斜程度小于直线l2的倾斜程度,这表明曲线y=f(x)在x=x1附近比在x=x2附近上升得缓慢.求切点坐标 过曲线y=x2上哪一点的切线满足下列条件?(1)平行于直线y=4x-5;(2)垂直于直线2x-6x+5=0;(3)倾斜角为135°.【精彩点拨】 本题考查曲线的切线的有关问题.解题的关键是设出切点的坐标,求出切线的斜率.【自主解答】 f′(x)===2x,设P(x0,y0)是满足条件的点.(1)∵切线与直线y=4x-5平行
7、,∴2x0=4,x0=2,y0=4,即P(2,4)是满足条件的点.(2)∵切线与直线2x-6y+5=0垂直,∴2x0·=-1,得x0=-,y0=,即P是满足条件的点.(3)∵切线的倾斜角为135°,∴其斜率为-1.即2x0=-1,得x0=-,y0=,即P是满足条件的点.解答此类题目时,所给的直线的倾斜角或斜率是解题的关键,由这些信息得知函数在某点处的导数,进而可求此点的横坐标.解题时要注意解析几何知识的应用,如直线的倾斜角与斜率的关系,平行,垂直等.[再练一题]2.已知曲线y=2x2+a在点P处的切线方程为8x-y-15=0,求切点P的坐
8、标和实数a的值.【导学号:97792036】【解】 设切点P(x0,y0),切线斜率为k.由y′===(4x+2Δx)=4x,得k=y′
9、=4x0,根据题意4x0=8,x0=2,分别代入y=2
此文档下载收益归作者所有