例题教学后的反思.doc

例题教学后的反思.doc

ID:14511502

大小:24.00 KB

页数:2页

时间:2018-07-29

例题教学后的反思.doc_第1页
例题教学后的反思.doc_第2页
资源描述:

《例题教学后的反思.doc》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、例题教学后的反思我们常有这样的困惑:不仅是讲了,而且是讲了多遍,可是学生的解题能力就是得不到提高!也常听见学生这样的埋怨:巩固题做了千万遍,数学成绩却迟迟得不到提高!这应该引起我们的反思了.诚然,出现上述情况涉及方方面面,但其中的例题教学值得反思,数学的例题是知识由产生到应用的关键一步,即所谓“抛砖引玉”,然而很多时候只是例题继例题,解后并没有引导学生进行反思,因而学生的学习也就停留在例题表层,出现上述情况也就不奇怪了.事实上,解后反思是一个知识小结、方法提炼的过程;是一个吸取教训、逐步提高的过程;是一个收获希望的过程.从这个角度上讲,例题教学的解后反思应该成为例题教学的一个重要内容.本文拟

2、从以下三个方面作些探究.一、在解题的方法规律处反思“例题千万道,解后抛九霄”难以达到提高解题能力、发展思维的目的.善于作解题后的反思、方法的归类、规律的小结和技巧的揣摩,再进一步作一题多变,一题多问,一题多解,挖掘例题的深度和广度,扩大例题的辐射面,无疑对能力的提高和思维的发展是大有裨益的.例如:(原例题)已知等腰三角形的腰长是4,底长为6;求周长.我们可以将此例题进行一题多变.变式1:已知等腰三角形一腰长为4,周长为14,求底边长.(这是考查逆向思维能力)变式2:已等腰三角形一边长为4;另一边长为6,求周长.(前两题相比,需要改变思维策略,进行分类讨论)变式3:已知等腰三角形的一边长为3,

3、另一边长为6,求周长.(显然“3只能为底”否则与三角形两边之和大于第三边相矛盾,这有利于培养学生思维严密性)变式4:已知等腰三角形的腰长为x,求底边长y的取值范围.变式5:已知等腰三角形的腰长为x,底边长为y,周长是14.请先写出二者的函数关系式,再在平面直角坐标内画出二者的图象.(与前面相比,要求又提高了,特别是对条件0<y<2x的理解运用,是完成此问的关键)通过例题的层层变式,学生对三边关系定理的认识又深了一步,有利于培养学生从特殊到一般,从具体到抽象地分析问题、解决问题;通过例题解法多变的教学则有利于帮助学生形成思维定势,而又打破思维定势;有利于培养思维的变通性和灵活性.二、在学生易错

4、处反思学生的知识背景、思维方式、情感体验往往和成人不同,而其表达方式可能又不准确,这就难免有“错”.例题教学若能从此切入,进行解后反思,则往往能找到“病根”,进而对症下药,常能收到事半功倍的效果!有这样一个案例:一位七年级的老师在讲完负负得正的规则后,出了这样一道题:-3×(-4)=(  )A学生的答案是“9”,老师一看:错了!于是马上请B同学回答,这位同学的答案是“12”,老师便请他讲一讲算法:……,下课后听课的老师对给出错误的答案的学生进行访谈,那位学生说:站在-3这个点上,因为乘以-4,所以要沿着数轴向相反方向移动四次,每次移三格,故答案为9.他的答案的确错了,怎么错的?为什么会有这样

5、的想法?又怎样纠正呢?如果我们的例题教学能抓住这一契机,并就此展开讨论、反思,无疑比讲十道、2百道乃至更多的例题来巩固法则要好得多,而这一点恰恰容易被我们所忽视.计算是初中代数的教学重点也是难点,如何把握这一重点,突破这一难点?各老师在例题教学方面可谓“千方百计”.例如在上完有关幂的性质,而进入下一阶段———单项式、多项式的乘除法时,笔者就设计了如下的两个例题:(1)请分别指出(-2)2,-22,-2-2,2-2的意义;(2)请辨析下列各式:①a2+a2=a4;②a4÷a2=a4÷2=a2;③-a3•(-a)2=(-a)3+2=-a5.解后笔者便引导学生进行反思小结.(1)计算常

6、出现哪些方面的错误?(2)出现这些错误的原因有哪些?(3)怎样克服这些错误呢?同学们各抒己见,针对各种“病因”开出了有效的“方子”.实践证明,这样的例题教学是成功的,学生在计算的准确率、计算的速度两个方面都有极大的提高.三、在情感体验处反思因为整个的解题过程并非仅仅只是一个知识运用、技能训练的过程,而是一个伴随着交往、创造、追求和喜、怒、哀、乐的综合过程,是学生整个内心世界的参与.其间他既品尝了失败的苦涩,又收获了“山重水复疑无路,柳暗花明又一村”的喜悦,他可能是独立思考所得,也有可能是通过合作协同解决,既体现了个人努力的价值,又无不折射出集体智慧的光芒.在此处引导学生进行解后反思,有利于培

7、养学生积极的情感体验和学习动机;有利于激励学生的学习兴趣,点燃学习的热情,变被动学习为自主探究学习;还有利于锻炼学生的学习毅力和意志品格.同时,在此过程中,学生独立思考的学习习惯、合作意识和团队精神均能得到很好的培养.数学教育家弗赖登塔尔就指出:反思是数学活动的核心和动力.总之,解后的反思方法、规律得到了及时的小结归纳;解后的反思使我们拨开迷蒙,看清“庐山真面目”而逐渐成熟起来;在反思中学会了独立思考,在反思

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。