第三章 基本体的投影

第三章 基本体的投影

ID:14479218

大小:1.70 MB

页数:29页

时间:2018-07-28

第三章 基本体的投影_第1页
第三章 基本体的投影_第2页
第三章 基本体的投影_第3页
第三章 基本体的投影_第4页
第三章 基本体的投影_第5页
资源描述:

《第三章 基本体的投影》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、Designtechnicalsolution3基本体投影立体的形状是各种各样的,但任何复杂立体都可以分析成是由一些简单的几何体组成,如棱柱、棱锥、圆柱、圆锥、球等,这些简单的几何体统称为基本几何体。根据基本几何体表面的几何性质,它们可分为平面立体和曲面立体。立体表面全是平面的立体称为平面立体;立体表面全是曲面或既有曲面又有平面的立体称为曲面立体。3.1平面立体投影1233.13.1.1平面立体的投影平面立体的各个边都是平面多边形,用三面投影图表示平面立体,可归纳为画出围成立体的各个表面的投影,或者是画

2、出立体上所有棱线的投影。注意作图时可见棱线应画成粗实线,不可见棱线应画成虚线。(1)五棱柱如图3-1-1所示,分析五棱柱:五棱柱的顶面和底面平行于H面,它在水平面上的投影反映实形且重合在一起,而他们的正面投影及侧面投影分别积聚为水平方向的直线段。五棱柱的后侧棱面EE1D1D为一正平面,在正平面上投影反映其实形,EE1、DD1直线在正面上投影不可见,其水平投影及侧面投影积聚成直线段。五棱柱的另外四个侧棱面都是铅垂面,其水平投影分别汇聚成直线段,而正面投影及侧面投影均为比实形小的类似体。(a)立体图29De

3、signtechnicalsolution(b)五棱柱的投影(c)三面投影图图3-1-1投影图如图3-1-1所示,立体图形距离投影面的距离不影响各投影图形的形状及它们之间的相互关系。为了作图简便、图形清楚,在以后的作图中省去投影轴。作图步骤如图3-1-2所示:1.布置图面,画作图基线,如图3-1-2(a)所示;2.画出反映真实形状的面,如图3-1-2(b)所示;3.根据投影规律画出其他视图,如图3-1-2(c)所示;4.检查整理底稿后,加深三视图的可见线,将不可见线绘制成虚线,如图3-1-2(d)所示。

4、29Designtechnicalsolution(a)画作图基线(b)画V面投影(c)根据投影规律画出其他视图(d)加深三视图的可见线,将不可见线绘制成虚线图3-1-229Designtechnicalsolution(1)三棱锥(a)立体图(b)投影图(c)三面投影图图3-1-3如图3-1-3所示,分析三棱锥:三棱锥的底面ABC平行于平面H在水平投影上反映真实形状;BCS垂直于V面,在正平面上投影为一条直线。作图时应先画出底面△ABC的三面投影,再作出锥顶S的三面投影,然后连接各棱线,完成斜三棱柱的

5、三面投影图。棱线可见性则需要通过具体情况分析进行判断。29Designtechnicalsolution1.1.1棱柱表面上取点在立体表面上取点,就是根据立体表面上的已知点的一个投影求出它的另外投影。由于平面立体的各个表面均为平面,所以其原理与方法与在平面上取点相同。1.正六棱柱上取点如图3-1-4中为正六棱柱的三面投影图,正六棱柱的顶面和底面为水平面,前后两侧棱柱面为正平面,其他四个侧棱面均为铅垂面。正六棱柱的前后对称,左右也对称。若已知六棱柱表面M点的正面投影m’,六棱柱底面上N点的水平投影n,求两

6、点其余投影。求M点投影,如图3-1-4所示,首先确定M点在哪一个棱面上,由于M点可见,故M点属于六棱柱左前棱面,此棱面为铅垂面,水平投影具有积聚性,因此可由m’向下作辅助线直接求出水平投影m,再借助投影关系求出侧面投影m”。求N点投影,如图3-1-4所示,确定N点所在面,水平投影不可见,可知N点位于下端面,此面是水平面在正平面和侧平面上投影具有积聚性,所以可直接求得N点的其他投影。(a)已知(b)作图求解图3-1-42.三棱锥取点如图3-1-5中所示,三棱柱底面ABC平面为水平面,BCS面为侧垂面。若已

7、知三棱锥表面上两点M和N的正面投影,求其水平投影和侧面投影。求M点的水平投影和侧面投影,从所给出的M点的正面投影不可见,可知M点位于BCS面上,BCS面为侧垂面在侧面投影上具有积聚性,我们可以直接得出m”,利用投影关系可求得m。求N点的水平投影和侧面投影,分析N点位于SAC面上,可过N点作辅助直线SI,可求得SI的水平投影和正面投影,N属于SI上的一点,可使用求直线上一点的方法求得N29Designtechnicalsolution点水平投影,使用投影关系求得侧面投影,如图3-1-5所示。(a)已知(b

8、)作图求解图3-1-51.1回转体投影常见的曲面立体有圆柱、圆锥、球、圆环等,这些立体表面上的曲面都是回转面,因此又称它们为回转体。图3-2-1回转面的形成(如图3-2-1所示):回转面是由一条母线(直线或是曲线)绕某一轴线回转而形成的曲面,母线在回转过程中的任意位置称为素线;母线各点运行轨迹皆为垂直于回转体轴线的圆。29Designtechnicalsolution圆柱:由圆柱面和两端圆平面组成。圆柱面是一直线绕与之平行的轴线旋转而成。圆

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。