资源描述:
《introduction to non-linear optimization》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、Introductiontonon-linearoptimizationRossA.LippertD.E.ShawResearchFebruary25,2008R.A.LippertNon-linearoptimizationOptimizationproblemsproblem:Letf:Rn!( 1;1],ndminff(x)gx2Rnndxs.t.f(x)=minff(x)gx2RnQuitegeneral,butsomecases,likefconvex,arefairlysolvable.Today’sproblem:Howaboutf:Rn!R,smooth?
2、ndxs.t.rf(x)=0Wehaveareasonableshotatthisiffistwicedifferentiable.R.A.LippertNon-linearoptimizationTwopillarsofsmoothmultivariateoptimizationn-Doptimizationlinearsolve/quadraticopt.1DoptimizationR.A.LippertNon-linearoptimizationThesimplestexamplewecangetQuadraticoptimization:f(x)=c xtb+1xtAx
3、.2verycommon(actuallyuniversal,morelater)Findingrf(x)=0rf(x)=b Ax=0x=A 1bAhastobeinvertible(really,binrangeofA).Isthisallweneed?R.A.LippertNon-linearoptimizationMax,min,saddle,orwhat?RequireAbepositivedenite,why?302.5−0.52−11.5−1.51−20.5−2.50−3110.510.510.50.50000−0.5−0.5−0.5−0.5−1−1−1−1110.
4、50.800.6−0.50.4−10.2−1.5−20110.510.510.50.50000−0.5−0.5−0.5−0.5−1−1−1−1R.A.LippertNon-linearoptimizationUniversalityoflinearalgebrainoptimizationt1tf(x)=c xb+xAx2Linearsolve:x=A 1b.Evenfornon-linearproblems:ifoptimalxnearourxt1tf(x)f(x)+(x x)rf(x)+(x x)rrf(x)(x x)+2 1x=x x (rrf(x)
5、)rf(x)Optimization$LinearsolveR.A.LippertNon-linearoptimizationLinearsolvex=A 1bButreallywejustwanttosolveAx=bDon’tformA 1ifyoucanavoidit.(Don’tformAifyoucanavoidthat!)ForageneralA,therearethreeimportantspecialcases,01a100diagonal:A=@0a0Athusx=1b2iaii00a3orthogonalAtA=I,thusA 1=Atandx=Atb01a11
6、00Ptriangular:A=@aa0A,x=1b ax2122iaiiij