introduction to non-linear optimization

introduction to non-linear optimization

ID:14414739

大小:735.76 KB

页数:37页

时间:2018-07-28

introduction to non-linear optimization_第1页
introduction to non-linear optimization_第2页
introduction to non-linear optimization_第3页
introduction to non-linear optimization_第4页
introduction to non-linear optimization_第5页
资源描述:

《introduction to non-linear optimization》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、Introductiontonon-linearoptimizationRossA.LippertD.E.ShawResearchFebruary25,2008R.A.LippertNon-linearoptimizationOptimizationproblemsproblem:Letf:Rn!(1;1],ndminff(x)gx2Rnndxs.t.f(x)=minff(x)gx2RnQuitegeneral,butsomecases,likefconvex,arefairlysolvable.Today’sproblem:Howaboutf:Rn!R,smooth?

2、ndxs.t.rf(x)=0Wehaveareasonableshotatthisiffistwicedifferentiable.R.A.LippertNon-linearoptimizationTwopillarsofsmoothmultivariateoptimizationn-Doptimizationlinearsolve/quadraticopt.1DoptimizationR.A.LippertNon-linearoptimizationThesimplestexamplewecangetQuadraticoptimization:f(x)=cxtb+1xtAx

3、.2verycommon(actuallyuniversal,morelater)Findingrf(x)=0rf(x)=bAx=0x=A1bAhastobeinvertible(really,binrangeofA).Isthisallweneed?R.A.LippertNon-linearoptimizationMax,min,saddle,orwhat?RequireAbepositivedenite,why?302.5−0.52−11.5−1.51−20.5−2.50−3110.510.510.50.50000−0.5−0.5−0.5−0.5−1−1−1−1110.

4、50.800.6−0.50.4−10.2−1.5−20110.510.510.50.50000−0.5−0.5−0.5−0.5−1−1−1−1R.A.LippertNon-linearoptimizationUniversalityoflinearalgebrainoptimizationt1tf(x)=cxb+xAx2Linearsolve:x=A1b.Evenfornon-linearproblems:ifoptimalxnearourxt1tf(x)f(x)+(xx)rf(x)+(xx)rrf(x)(xx)+21x=xx(rrf(x)

5、)rf(x)Optimization$LinearsolveR.A.LippertNon-linearoptimizationLinearsolvex=A1bButreallywejustwanttosolveAx=bDon’tformA1ifyoucanavoidit.(Don’tformAifyoucanavoidthat!)ForageneralA,therearethreeimportantspecialcases,01a100diagonal:A=@0a0Athusx=1b2iaii00a3orthogonalAtA=I,thusA1=Atandx=Atb01a11

6、00Ptriangular:A=@aa0A,x=1bax2122iaiiijiR.A.LippertNon-linearoptimizationDirectmeth

7、odsAissymmetricpositivedenite.Eigenvaluefactorization:A=QDQt;whereQisorthogonalandDisdiagonal.Thenx=QD1Qtb:MoreexpensivethanChoeskyDirectmethodsareusuallyquiteexpensive(O(n3)work).R.A.LippertNon-linearoptimizationIterativemethodba

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。